Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cytokine ; 169: 156249, 2023 09.
Article in English | MEDLINE | ID: mdl-37290276

ABSTRACT

Lung cancer is a common and highly malignant tumor. Although lung cancer treatments continue to advance, conventional therapies are limited and the response rate of patients to immuno-oncology drugs is low. This phenomenon raises an urgent need to develop effective therapeutic strategies for lung cancer. In this study, we genetically modified human primary CD8+ T cells and obtained antitumor extracellular vesicles (EVs) from them. The engineered EVs, containing interlekin-2 and the anti-epidermal growth factor receptor (EGFR) antibody cetuximab on their surfaces, exhibited direct cytotoxicity against A549 human lung cancer cells and increased cancer cell susceptibility to human peripheral blood mononuclear cell-mediated cytotoxicity. In addition, the engineered EVs specifically targeted the lung cancer cells in an EGFR-dependent manner. Taken together, these findings show that surface engineering of cytokines and antibodies on CD8+ T cell-derived EVs not only enhances their antitumor effects but also confers target specificity, suggesting a potential of modifying the immune cell-derived EVs in cancer treatment.


Subject(s)
Extracellular Vesicles , Lung Neoplasms , Humans , CD8-Positive T-Lymphocytes , Leukocytes, Mononuclear/metabolism , Cell Line, Tumor , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , ErbB Receptors/metabolism , Extracellular Vesicles/metabolism
2.
J Cachexia Sarcopenia Muscle ; 14(3): 1441-1453, 2023 06.
Article in English | MEDLINE | ID: mdl-37017344

ABSTRACT

BACKGROUND: Patients with cancer undergoing chemotherapy experience cachexia with anorexia, body weight loss, and the depletion of skeletal muscles and adipose tissues. Effective treatment strategies for chemotherapy-induced cachexia are scarce. The growth differentiation factor 15 (GDF15)/GDNF family receptor alpha-like (GFRAL)/rearranged during transfection (RET) axis is a critical signalling pathway in chemotherapy-induced cachexia. In this study, we developed a fully human GFRAL antagonist antibody and investigated whether it inhibits the GDF15/GFRAL/RET axis, thereby alleviating chemotherapy-induced cachexia in tumour-bearing mice. METHODS: Anti-GFRAL antibodies were selected via biopanning, using a human combinatorial antibody phage library. The potent GFRAL antagonist antibody A11 was selected via a reporter cell assay and its inhibitory activity of GDF15-induced signalling was evaluated using western blotting. To investigate the in vivo function of A11, a tumour-bearing mouse model was established by inoculating 8-week-old male C57BL/6 mice with B16F10 cells (n = 10-16 mice per group). A11 was administered subcutaneously (10 mg/kg) 1 day before intraperitoneal treatment with cisplatin (10 mg/kg). Animals were assessed for changes in food intake, body weight, and tumour volume. Plasma and key metabolic tissues such as skeletal muscles and adipose tissues were collected for protein and mRNA expression analysis. RESULTS: A11 reduced serum response element-luciferase reporter activity up to 74% (P < 0.005) in a dose-dependent manner and blocked RET phosphorylation up to 87% (P = 0.0593), AKT phosphorylation up to 28% (P = 0.0593) and extracellular signal regulatory kinase phosphorylation up to 75% (P = 0.0636). A11 inhibited the action of cisplatin-induced GDF15 on the brainstem and decreased GFRAL-positive neuron population expressing c-Fos in the area postrema and nucleus of the solitary tract by 62% in vivo (P < 0.05). In a melanoma mouse model treated with cisplatin, A11 recovered anorexia by 21% (P < 0.05) and tumour-free body weight loss by 13% (P < 0.05). A11 significantly improved the cisplatin-induced loss of skeletal muscles (quadriceps: 21%, gastrocnemius: 9%, soleus: 13%, P < 0.05) and adipose tissues (epididymal white adipose tissue: 37%, inguinal white adipose tissue: 51%, P < 0.05). CONCLUSIONS: Our study suggests that GFRAL antagonist antibody may alleviate chemotherapy-induced cachexia, providing a novel therapeutic approach for patients with cancer experiencing chemotherapy-induced cachexia.


Subject(s)
Antineoplastic Agents , Melanoma , Mice , Humans , Male , Animals , Cachexia/chemically induced , Cachexia/drug therapy , Glial Cell Line-Derived Neurotrophic Factor , Anorexia/metabolism , Cisplatin , Mice, Inbred C57BL , Antineoplastic Agents/adverse effects
3.
Biomaterials ; 289: 121765, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36067566

ABSTRACT

Extracellular vesicles (EVs) mediate cell-cell crosstalk by carrying bioactive molecules derived from cells. Recently, immune cell-derived EVs have been reported to regulate key biological functions such as tumor progression. CD4+ T cells orchestrate overall immunity; however, the biological role of their EVs is unclear. This study reveals that EVs derived from CD4+ T cells increase the antitumor response of CD8+ T cells by enhancing their proliferation and activity without affecting regulatory T cells (Tregs). Moreover, EVs derived from interleukin-2 (IL2)-stimulated CD4+ T cells induce a more enhanced antitumor response of CD8+ T cells compared with that of IL2-unstimulated CD4+ T cell-derived EVs. Mechanistically, miR-25-3p, miR-155-5p, miR-215-5p, and miR-375 within CD4+ T cell-derived EVs are responsible for the induction of CD8+ T cell-mediated antitumor responses. In a melanoma mouse model, the EVs potently suppress tumor growth through CD8+ T cell activation. This study demonstrates that the EVs, in addition to IL2, are important mediators between CD4+ and CD8+ T cells. Furthermore, unlike IL2, clinically used as an antitumor agent, CD4+ T cell-derived EVs stimulate CD8+ T cells without activating Tregs. Therefore, CD4+ T cell-derived EVs may provide a novel direction for cancer immunotherapy by inducing a CD8+ T cell-mediated antitumor response.


Subject(s)
Extracellular Vesicles , MicroRNAs , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Interleukin-2 , Mice , T-Lymphocytes, Regulatory
4.
BMB Rep ; 55(1): 48-56, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34353429

ABSTRACT

Small extracellular vesicles (sEVs) secreted by most cells carry bioactive macromolecules including proteins, lipids, and nucleic acids for intercellular communication. Given that some immune cell-derived sEVs exhibit anti-cancer properties, these sEVs have received scientific attention for the development of novel anticancer immunotherapeutic agents. In this paper, we reviewed the latest advances concerning the biological roles of immune cell-derived sEVs for cancer therapy. sEVs derived from immune cells including dendritic cells (DCs), T cells, natural-killer (NK) cells, and macrophages are good candidates for sEV-based cancer therapy. Besides their role of cancer vaccines, DC-shed sEVs activated cytotoxic lymphocytes and killed tumor cells. sEVs isolated from NK cells and chimeric antigen receptor (CAR) T cells exhibited cytotoxicity against cancer cells. sEVs derived from CD8+ T and CD4+ T cells inhibited cancer-associated cells in tumor microenvironment (TME) and activated B cells, respectively. M1-macrophage-derived sEVs induced M2 to M1 repolarization and also created a pro-inflammatory environment. Hence, these sEVs, via mono or combination therapy, could be considered in the treatment of cancer patients in the future. In addition, sEVs derived from cytokine-stimulated immune cells or sEV engineering could improve their anti-tumor potency. [BMB Reports 2022; 55(1): 48-56].


Subject(s)
Extracellular Vesicles , Neoplasms , Cell Communication , Cytokines/metabolism , Extracellular Vesicles/metabolism , Humans , Macrophages/metabolism , Neoplasms/metabolism , Neoplasms/therapy
5.
Autophagy ; 12(11): 2009-2025, 2016 11.
Article in English | MEDLINE | ID: mdl-27533078

ABSTRACT

Hypothalamic AMP-activated protein kinase (AMPK) plays important roles in the regulation of food intake by altering the expression of orexigenic or anorexigenic neuropeptides. However, little is known about the mechanisms of this regulation. Here, we report that hypothalamic AMPK modulates the expression of NPY (neuropeptide Y), an orexigenic neuropeptide, and POMC (pro-opiomelanocortin-α), an anorexigenic neuropeptide, by regulating autophagic activity in vitro and in vivo. In hypothalamic cell lines subjected to low glucose availability such as 2-deoxy-d-glucose (2DG)-induced glucoprivation or glucose deprivation, autophagy was induced via the activation of AMPK, which regulates ULK1 and MTOR complex 1 followed by increased Npy and decreased Pomc expression. Pharmacological or genetic inhibition of autophagy diminished the effect of AMPK on neuropeptide expression in hypothalamic cell lines. Moreover, AMPK knockdown in the arcuate nucleus of the hypothalamus decreased autophagic activity and changed Npy and Pomc expression, leading to a reduction in food intake and body weight. AMPK knockdown abolished the orexigenic effects of intraperitoneal 2DG injection by decreasing autophagy and changing Npy and Pomc expression in mice fed a high-fat diet. We suggest that the induction of autophagy is a possible mechanism of AMPK-mediated regulation of neuropeptide expression and control of feeding in response to low glucose availability.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy , Eating , Gene Expression Regulation , Hypothalamus/enzymology , Neuropeptide Y/genetics , Pro-Opiomelanocortin/genetics , AMP-Activated Protein Kinases/antagonists & inhibitors , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/enzymology , Autophagy/drug effects , Autophagy/genetics , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein-1 Homolog/metabolism , Body Weight/drug effects , Cell Line , Deoxyglucose/pharmacology , Down-Regulation/drug effects , Eating/drug effects , Eating/genetics , Enzyme Activation/drug effects , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Hyperphagia/pathology , Male , Mechanistic Target of Rapamycin Complex 1 , Mice, Inbred C57BL , Multiprotein Complexes/metabolism , Neuropeptide Y/metabolism , Pro-Opiomelanocortin/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Up-Regulation/drug effects
6.
Brain Res ; 1649(Pt B): 158-165, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-26970520

ABSTRACT

Emerging evidence that autophagy serves as a sweeper for toxic materials in the brain gives us new insight into the pathophysiology of neurodegenerative diseases. Autophagy is important for maintaining cellular homeostasis associated with metabolism. Some neurodegenerative diseases such as Alzheimer׳s and Parkinson׳s diseases are accompanied by altered metabolism and autophagy in the brain. In this review, we discuss how hormones and nutrients regulate autophagy in the brain and affect neurodegeneration. This article is part of a Special Issue entitled SI:Autophagy.


Subject(s)
Autophagy , Brain/metabolism , Neurodegenerative Diseases/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Animals , Brain/physiopathology , Cholesterol/metabolism , Ghrelin/metabolism , Glucose/metabolism , Glycogen/metabolism , Homeostasis , Humans , Inulin/metabolism , Melatonin/metabolism , Mice , Neurodegenerative Diseases/physiopathology , Parkinson Disease/metabolism , Parkinson Disease/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...