Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34770093

ABSTRACT

A single-particle mass spectrometer (SPMS) with laser ionization was constructed to determine the chemical composition of single particles in real time. The technique was evaluated using various polystyrene latex particles with different sizes (125 nm, 300 nm, 700 nm, and 1000 nm); NaCl, KCl, MgCO3, CaCO3, and Al2O3 particles with different chemical compositions; an internal mixture of NaCl and KCl; and an internal mixture of NaCl, KCl, and MgCl2 with different mixing states. The results show that the SPMS can be useful for the determination of chemical characteristics and mixing states of single particles in real time. The SPMS was then applied to obtain the chemical signatures of various combustion aerosols (diesel engine exhaust, biomass burning (rice straw), coal burning, and cooking (pork)) based on their single-particle mass spectra. Elemental carbon (EC)-rich and EC-organic carbon (OC) particles were the predominant particle types identified in diesel engine exhaust, while K-rich and EC-OC-K particles were observed among rice straw burning emissions. Only one particle type (ash-rich particles) was detected among coal burning emissions. EC-rich and EC-OC particles were observed among pork burning particles. The single-particle mass spectra of the EC or OC types of particles differed among various combustion sources. The observed chemical signatures could be useful for rapidly identifying sources of atmospheric fine particles. In addition, the detected chemical signatures of the fine particles may be used to estimate their toxicity and to better understand their effects on human health.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Carbon/analysis , China , Coal , Environmental Monitoring , Humans , Particle Size , Particulate Matter/analysis , Seasons
2.
Pharmaceutics ; 13(10)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34683841

ABSTRACT

The wet type of age-related macular degeneration (AMD) accompanies the subfoveal choroidal neovascularization (CNV) caused by the abnormal extension or remodeling of blood vessels to the macula and retinal pigment epithelium (RPE). Vascular endothelial growth factor (VEGF) is known to play a crucial role in the pathogenesis of the disease. In this study, we tried to repurpose an investigational anticancer drug, rivoceranib, which is a selective inhibitor of VEGF receptor-2 (VEGFR2), and evaluate the therapeutic potential of the drug for the treatment of wet-type AMD in a laser-induced CNV mouse model using microsphere-based sustained drug release formulations. The PLGA-based rivoceranib microsphere can carry out a sustained delivery of rivoceranib for 50 days. When administered intravitreally, the sustained microsphere formulation of rivoceranib effectively inhibited the formation of subfoveal neovascular lesions in mice.

3.
Environ Sci Technol ; 49(20): 12024-35, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26389581

ABSTRACT

Ship-borne measurements of ambient aerosols were conducted during an 11 937 km cruise over the Arctic Ocean (cruise 1) and the Pacific Ocean (cruise 2). A frequent nucleation event was observed during cruise 1 under marine influence, and the abundant organic matter resulting from the strong biological activity in the ocean could contribute to the formation of new particles and their growth to a detectable size. Concentrations of particle mass and black carbon increased with increasing continental influence from polluted areas. During cruise 1, multiple peaks of hygroscopic growth factor (HGF) of 1.1-1.2, 1.4, and 1.6 were found, and higher amounts of volatile organic species existed in the particles compared to that during cruise 2, which is consistent with the greater availability of volatile organic species caused by the strong oceanic biological activity (cruise 1). Internal mixtures of volatile and nonhygroscopic organic species, nonvolatile and less-hygroscopic organic species, and nonvolatile and hygroscopic nss-sulfate with varying fractions can be assumed to constitute the submicrometer particles. On the basis of elemental composition and morphology, the submicrometer particles were classified into C-rich mixture, S-rich mixture, C/S-rich mixture, Na-rich mixture, C/P-rich mixture, and mineral-rich mixture. Consistently, the fraction of biological particles (i.e., P-containing particles) increased when the ship traveled along a strongly biologically active area.


Subject(s)
Aerosols/analysis , Environmental Monitoring/methods , Ships , Aerosols/chemistry , Arctic Regions , Carbon/analysis , Oceans and Seas , Pacific Ocean , Particle Size , Phosphorus/analysis , Sodium/analysis , Sulfates/analysis , Sulfur/analysis , Volatile Organic Compounds/analysis , Volatilization , Wettability
4.
Environ Sci Technol ; 48(2): 909-19, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24328132

ABSTRACT

Aerosols have been associated with large uncertainties in estimates of the radiation budget and cloud formation processes in the Arctic. This paper reports the results of a study of in situ measurements of hygroscopicity, fraction of volatile species, mixing state, and off-line morphological and elemental analysis of Aitken and accumulation mode particles in the Arctic (Ny-Ålesund, Svalbard) in May and September 2012. The accumulation mode particles were more abundant in May than in September. This difference was due to more air mass flow from lower latitude continental areas, weaker vertical mixing, and less wet scavenging in May than in September, which may have led to a higher amount of long-range transport aerosols entering the Arctic in the spring. The Aitken mode particles observed intermittently in May were produced by nucleation, absent significant external mixing, whereas the accumulation mode particles displayed significant external mixing. The occurrence of an external mixing state was observed more often in May than in September and more often in accumulation mode particles than in Aitken mode particles, and it was associated more with continental air masses (Siberian) than with other air masses. The external mixing of the accumulation mode particles in May may have been caused by multiple sources (i.e., long-range transport aerosols with aging and marine aerosols). These groups of externally mixed particles were subdivided into different mixing structures (internal mixtures of predominantly sulfates and volatile organics without nonvolatile species and internal mixtures of sulfates and nonvolatile components, such as sea salts, minerals, and soot). The variations in the mixing states and chemical species of the Arctic aerosols in terms of their sizes, air masses, and seasons suggest that the continuous size-dependent measurements observed in this study are useful for obtaining better estimates of the effects of these aerosols on climate change.


Subject(s)
Particle Size , Particulate Matter/chemistry , Seasons , Air , Arctic Regions , Geography , Sulfates/analysis , Svalbard , Volatilization , Wettability
5.
ScientificWorldJournal ; 2013: 519397, 2013.
Article in English | MEDLINE | ID: mdl-23476140

ABSTRACT

INTRODUCTION: The aim was to evaluate the changes of androgen receptor (AR) expression quantitatively and to identify influence of AR on cancer related survival markers in LNCap cell line. MATERIALS AND METHODS: We compared expressions of AR, heat shock protein 27 (HSP27), clusterin (CLU), glucose-related protein 78 (GRP78), and cellular FLICE-like inhibitory protein (c-FLIP) and their genes between es-LNCaP (less than 33 times subcultured, L-33), ls-LNCaP (over 81 times subcultured, H-81), and si-LNCaP (AR siRNA transfected ls-LNCaP) by Western blotting and RT-PCR. RESULTS: The expressions of AR, HSP27, CLU, GRP78, and c-FLIP were increased in ls-LNCaP compared with es-LNCaP (AR, 157%; HSP27, 132%; CLU, 146%; GRP78, 138%; c-FLIP, 152%). However, in si-LNCaP cell line, protein expressions were reversed to the level of es-LNCaP cell lines (25, 102, 109, 98, and 101%), and gene expressions on real-time PCR were also reversed to the expression level of es-LNCaP (ls-LNCaP: 179, 156, 133, 123, and 167%; si-LNCaP: 22, 93, 103, 112, and 107%). CONCLUSIONS: This finding suggests that androgen receptor can be related to the increased expression of cancer related survival markers such as HSP27, GRP78, CLU, and c-FLIP in late stage prostate cancer, and also inhibition of AR gene can be a therapeutic target in this stage of cancer.


Subject(s)
Apoptosis , Gene Expression Regulation, Neoplastic , Genes, Neoplasm , RNA, Small Interfering/metabolism , Receptors, Androgen/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Cell Line, Tumor , Endoplasmic Reticulum Chaperone BiP , HSP27 Heat-Shock Proteins/genetics , HSP27 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones , RNA, Small Interfering/genetics , Receptors, Androgen/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...