Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Vet Sci ; 11(2)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38393108

ABSTRACT

With the ongoing global warming-induced climate change, there has been a surge in vector-borne diseases, particularly tick-borne diseases (TBDs). As the population of companion animals grows, there is growing concern from a One Health perspective about the potential for these animals to spread TBDs. In this study, ticks were collected from companion animals and the surrounding environment in Daejeon Metropolitan City, Korea, using flagging and dragging, and CO2 trap methods. These ticks were then subjected to conventional (nested) PCR for severe fever with thrombocytopenia syndrome virus (SFTSV), Anaplasma spp., Ehrlichia spp., and Borrelia spp. We identified a total of 29,176 ticks, consisting of three genera and four species: H. longicornis, H. flava, I. nipponensis, and A. testudinarium. Notably, H. longicornis was the predominant species. The presence of A. testudinarium suggested that the species traditionally found in southern regions are migrating northward, likely as a result of climate change. Our PCR results confirmed the presence of all four pathogens in both companion animals and the surrounding environment, underscoring the potential for the indirect transmission of tick-borne pathogens to humans through companion animals. These findings emphasize the importance of the ongoing surveillance of companion animals in the management and control of TBDs.

2.
Animals (Basel) ; 14(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38254354

ABSTRACT

The Korean water deer (WD), a predominant wildlife species in South Korea, is listed as vulnerable by the IUCN Red List. Despite belonging to the same family, Cervidae, WD show significantly fewer adult ixodid tick infestations compared to roe deer (RD). Ticks, which cannot fly, engage in questing behavior in natural environments to latch onto hosts. They detect signals like body temperature and host skin chemicals to navigate through the hair coat to the preferred epidermis. In light of this, we performed an extensive comparative study of the skin tissue and hair characteristics of both deer species, focusing on elements contributing to the reduced tick bite incidence in WD. Remarkably, WD exhibited more prominent blood vessels, sebaceous glands, and sweat glands, which are crucial for skin barrier functions (p < 0.005). Moreover, WD had irregular scale patterns on their hair cuticles and possessed hair that was significantly stiffer and 2.83 times thicker than that of RD (p < 0.001). These characteristics potentially impede ticks from reaching the epidermis hair in WD and RD in the context of tick bite prevention. Further investigations in this area could enhance our understanding of tick-host dynamics and contribute to developing preventive measures against tick-borne diseases in other deer species.

3.
Microbiol Resour Announc ; 13(1): e0011823, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38117065

ABSTRACT

Porcine epidemic diarrhea (PED) outbreaks occur annually in the Republic of Korea. The complete genome sequence of the PED virus isolate CKK1-1 obtained from an infected pig was determined. The genome is 28,037 nt long, excluding the poly(A) tail, and contains seven open reading frames flanked by two untranslated regions.

4.
Animals (Basel) ; 13(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38003116

ABSTRACT

The COVID-19 pandemic is caused by the zoonotic SARS-CoV-2 virus. A wide range of animals that interact with humans have been investigated to identify potential infections. As the extent of infection became more apparent, extensive animal monitoring became necessary to assess their susceptibility. This study analyzed nasal swabs and blood samples collected from randomly selected Korean native cattle and Korean native black goats. The tests conducted included real-time qPCR to detect SARS-CoV-2 antigens, an ELISA to detect antibodies, and a plaque reduction neutralization test (PRNT) to determine the presence of neutralizing antibodies. Among the 1798 animals tested (consisting of 1174 Korean native cattle and 624 Korean native black goats), SARS-CoV-2 viral RNA was detected in one Korean native cattle and one Korean native black goat. ELISA testing revealed positive results for antibodies in 54 Korean native cattle (4.60%) and 16 Korean native black goats (2.56%), while PRNTs yielded positive results in 51 Korean native cattle (4.34%) and 14 Korean native black goats (2.24%). The presence of SARS-CoV-2 antigens and/or antibodies was identified in animals on farms where farmworkers were already infected. It is challenging to completely rule out the possibility of reverse zoonotic transmission from humans to livestock in Korea, although the transmission is not to the same extent as it is in highly susceptible animal species like minks, cats, and dogs. This is due to the limited geographical area and the dense, intensive farming practices implemented in these regions. In conclusion, continuous viral circulation between humans and animals is inevitable, necessitating ongoing animal monitoring to ensure public health and safety.

5.
Animals (Basel) ; 13(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37443947

ABSTRACT

Korean native cattle are highly valued for their rich marbling and flavor. Nonetheless, endeavors to enhance marbling levels can result in obesity, a prevalent contributor to fat necrosis. Fat necrosis is characterized by the formation of necrotic fat masses in the abdominal cavity, which physically puts pressure on affected organs, causing physical torsion or obstruction, resulting in death and consequent economic loss. Pancreatic injuries or diabetes mellitus were reported as factors of fat necrosis in humans; however, the pathogenesis in animals has not been established. In this study, we identified fat necrosis in a 6-month-old Korean native cow and investigated its potential underlying causes. Serum samples were utilized for a microarray analysis of bovine miRNA. Comparative examination of miRNA expression levels between cattle afflicted with fat necrosis and healthy cattle unveiled notable variances in 24 miRNAs, such as bta-miR-26a, bta-miR-29a, bta-miR-30a-5p and bta-miR-181a. Upon conducting miRNA-mediated KEGG pathway analysis, several pathways including the prolactin signal pathway, insulin resistance, autophagy, the insulin-signaling pathway and the FoxO-signaling pathway were found to be significantly enriched in the calf affected by fat necrosis. As a result, this study potentially indicates a potential connection between fat necrosis and diabetes in Korean native cattle.

6.
Vet Sci ; 10(5)2023 May 18.
Article in English | MEDLINE | ID: mdl-37235443

ABSTRACT

The factors that influence the pathogenicity of African swine fever (ASF) are still poorly understood, and the host's immune response has been indicated as crucial. Although an increasing number of studies have shown that gut microbiota can control the progression of diseases caused by viral infections, it has not been characterized how the ASF virus (ASFV) changes a pig's gut microbiome. This study analyzed the dynamic changes in the intestinal microbiome of pigs experimentally infected with the high-virulence ASFV genotype II strain (N = 4) or mock strain (N = 3). Daily fecal samples were collected from the pigs and distributed into the four phases (before infection, primary phase, clinical phase, and terminal phase) of ASF based on the individual clinical features of the pigs. The total DNA was extracted and the V4 region of the 16 s rRNA gene was amplified and sequenced on the Illumina platform. Richness indices (ACE and Chao1) were significantly decreased in the terminal phase of ASF infection. The relative abundances of short-chain-fatty-acids-producing bacteria, such as Ruminococcaceae, Roseburia, and Blautia, were decreased during ASFV infection. On the other hand, the abundance of Proteobacteria and Spirochaetes increased. Furthermore, predicted functional analysis using PICRUSt resulted in a significantly reduced abundance of 15 immune-related pathways in the ASFV-infected pigs. This study provides evidence for further understanding the ASFV-pig interaction and suggests that changes in gut microbiome composition during ASFV infection may be associated with the status of immunosuppression.

7.
Vaccines (Basel) ; 11(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37243027

ABSTRACT

Porcine epidemic diarrhea (PED) is a highly contagious disease that has been reported annually in several Asian countries, causing significant economic losses to the swine livestock industry. Although vaccines against the porcine epidemic diarrhea virus (PEDV) are available, their efficacy remains questionable due to limitations such as viral genome mutation and insufficient intestinal mucosal immunity. Therefore, the development of a safe and effective vaccine is necessary. In this study, a virulent Korean strain of PEDV, CKT-7, was isolated from a piglet with severe diarrhea, and six different conditions were employed for serial passage of the strain in a cell culture system to generate effective live attenuated vaccine (LAV) candidates. The characteristics of these strains were analyzed in vitro and in vivo, and the CKT-7 N strain was identified as the most effective vaccine candidate, with a viral titer peak of 8.67 ± 0.29 log10TCID50/mL, and no mortality or diarrhea symptoms were observed in five-day-old piglets. These results indicate that LAV candidates can be generated through serial passage with different culture conditions and provide valuable insights into the development of a highly effective LAV against PEDV.

8.
Vaccines (Basel) ; 11(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37243069

ABSTRACT

Newborn piglets are susceptible to a highly contagious enteritis caused by the porcine epidemic diarrhea virus (PEDV), associated with high levels of mortality worldwide. There is pressing need for a rapid, safe, and cost-effective vaccine to safeguard pigs from getting infected by PEDV. PEDV belongs to the coronavirus family and is characterized by high levels of mutability. The primary goal of a PEDV vaccine is to provide immunity to newborn piglets through vaccination of sows. Plant-based vaccines are becoming more popular because they have low manufacturing costs, are easily scalable, have high thermostability, and a long shelf life. This is in contrast to conventional vaccines which include inactivated, live, and/or recombinant types that can be expensive and have limited ability to respond to rapidly mutating viruses. The binding of the virus to host cell receptors is primarily facilitated by the N-terminal subunit of the viral spike protein (S1), which also contains several epitopes that are recognized by virus-neutralizing antibodies. As a result, we generated a recombinant S1 protein using a plant-based vaccine platform. We found that the recombinant protein was highly glycosylated, comparable to the native viral antigen. Vaccination of pregnant sows at four and two weeks before farrowing led to the development of humoral immunity specific to S1 in the suckling piglets. In addition, we noted significant viral neutralization titers in both vaccinated sows and piglets. When challenged with PEDV, piglets born from vaccinated sows displayed less severe clinical symptoms and significantly lower mortality rates compared to piglets born from non-vaccinated sows.

9.
Animals (Basel) ; 13(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36830388

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have been frequently reported in companion dogs and cats worldwide during the ongoing coronavirus disease. However, RT-qPCR methods developed for humans have been used for the diagnosis of SARS-CoV-2 infections in suspected companion dogs and cats owing to the lack of the companion animal-tailored methods. Therefore, we developed a multiplex RT-qPCR (mRT-qPCR) using newly designed primers and probes targeting RdRp and N genes of all currently circulating SARS-CoV-2 variants as well as the canine or feline 16S rRNA gene as an endogenous internal positive control (EIPC) for reliable diagnosis of SARS-CoV-2 infection from suspected dogs and cats. The developed mRT-qPCR assay specifically detected the target genes of SARS-CoV-2 but no other canine or feline pathogens. Furthermore, canine and feline EIPCs were stably amplified by mRT-qPCR in samples containing canine- or feline-origin cellular materials. This assay has high repeatability and reproducibility, with an optimal limit of detection (<10 RNA copies per reaction) and coefficients of variation (<1.0%). The detection rate of SARS-CoV-2 of the developed mRT-qPCR was 6.6% for canine and feline nasopharyngeal samples, which was consistent with that of a commercial mRT-qPCR kit for humans. Collectively, the newly developed mRT-qPCR with canine and feline EIPC can efficiently diagnose and evaluate the viral load in field specimens and will be a valuable tool for etiological diagnosis, epidemiological study, and controlling SARS-CoV-2 infections in canine and feline populations.

10.
Animals (Basel) ; 12(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36290173

ABSTRACT

The COVID-19 pandemic was caused by the zoonotic SARS-CoV-2. A variety of animals involved in human life worldwide have been investigated for infection. As the degree of infection increased, extensive monitoring in animals became necessary to determine the degree of infection in animals. The study was conducted on a sample of dogs and cats, which were randomly sampled according to the number of confirmed cases in the region. Animals from both COVID-19-confirmed households and generally disease-negative families and animal shelters were included. Tests included real-time qPCR tests for SARS-CoV-2 antigens, ELISA for antibodies, and plaque reduction neutralization tests (PRNT) for neutralizing antibodies. As a result, SARS-CoV-2 viral RNA was detected in 2 cats out of 1018 pets (672 dogs and 346 cats). A total of 16 dogs (2.38%) and 18 cats (5.20%) tested positive using ELISA, and 14 dogs (2.08%) and 17 cats (4.91%) tested positive using PRNT. Antigens of- and/or antibodies to SARS-CoV-2 were detected in the animals regardless of whether the companion family was infected; this was the case even in animal shelters, which have been regarded as relatively safe from transmission. In conclusion, continuous viral circulation between humans and animals is inevitable; therefore, continuous monitoring in animals is required.

11.
Viruses ; 14(8)2022 08 04.
Article in English | MEDLINE | ID: mdl-36016348

ABSTRACT

Foot-and-mouth disease (FMD) is one of the most contagious diseases in cloven hoof animals. Vaccination can prevent or control FMD, and vaccine antigens should be matched against circulating viruses. According to phylogenetic analyses, field isolates in this region belonged to genotype V and showed low genetic similarity with the Asia1 Shamir vaccine, the OIE-recommended vaccine strain. In this study, we investigated whether pigs vaccinated with the Asia1 Shamir vaccine could be protected from challenges with the Asia1/MOG/05 virus, one of the genotype V field isolates. Eight pigs were divided into either vaccinated or nonvaccinated control groups. After two vaccinations with Asia1 Shamir, both groups of pigs were challenged with the Asia1/MOG/05 field isolate at 2 weeks after the second vaccination. In the control group, symptoms appeared at 2 days post-infection (dpi). The clinical sign score peaked at 4 dpi, and this coincided with virus shedding through nasal discharge. Neutralizing antibody titers peaked at 17 dpi. In the vaccinated group, clinical signs were delayed compared with the control group, and the highest score was shown at 10 dpi accompanied with virus nasal shedding, which peaked at 11 dpi. Neutralizing antibodies were induced 2 weeks after the second vaccination and peaked at 17 dpi. In conclusion, Asia1 Shamir vaccination in pigs provided partial protection from Asia1/MOG/05 virus infection.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Viral Vaccines , Animals , Antibodies, Viral , Asia, Eastern , Phylogeny , Swine , Vaccination , Viral Vaccines/genetics
12.
J Vet Med Sci ; 84(10): 1358-1362, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-35922936

ABSTRACT

A 3-year-old female Miniature Schnauzer dog with a week-long history of generalized intention tremor and progressive weight loss for several months was admitted. Mild anemia, fever, splenomegaly, aseptic cerebral meningitis and systemic lymph nodes enlargement were examined through erythrogram, ultrasonography, computed tomography and magnetic resonance imaging. Mycobacterium bovis was identified via molecular microbiology having the same molecular type as that of isolates from a cattle farm previously identified. However, the dog was raised in a city. The M. bovis had multidrug resistance (MDR)-bearing mutations in both katG and rpoB genes toward first-line antibiotics. To the best of our knowledge, this is the first report describing an MDR M. bovis infection of a dog in Korea.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Animals , Antitubercular Agents/therapeutic use , Cattle , Dogs , Female , Microbial Sensitivity Tests/veterinary , Mutation , Mycobacterium bovis/genetics
13.
J Appl Microbiol ; 133(3): 2074-2082, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35737750

ABSTRACT

AIMS: This study aimed to investigate the molecular characterization and antimicrobial susceptibility of Corynebacterium pseudotuberculosis from skin abscesses of Korean native black goats (KNBG, Capra hircus coreanae) in South Korea. METHODS AND RESULTS: A total of 83 isolates were recovered from skin abscesses of KNBG. Of these isolates, 74 isolates were identified as C. pseudotuberculosis by phospholipase D (PLD) gene-based PCR assay. Each of the isolates possessed all 18 virulence genes (FagA, FagB, FagC, FagD, SigE, SpaC, SodC, PknG, NanH, OppA, OppB, OppC, OppD, OppF, CopC, NrdH and CpaE). The genetic diversity of C. pseudotuberculosis isolates was assessed by the phylogenetic analysis using the concatenated sequences (3073 bp) of five housekeeping genes (fusA, dnaK, infB, groeL1 and leuA) for investigating their genetic diversity. In the results, the isolates belonged to three groups: group 1 (67 isolates), group 2 (one isolate) and group 3 (six isolates) within biovar ovis. However, the groups exhibited low genetic diversity (0.20%-0.41%). In the antimicrobial susceptibility test, most isolates were susceptible to tetracycline, vancomycin, chloramphenicol, ciprofloxacin, erythromycin, enrofloxacin, cefoxitin, ampicillin, gentamycin, cephalothin and doxycycline, whereas they were not susceptible to cefotaxime, trimethoprim and streptomycin. CONCLUSION: This results suggest the involvement of relatively few clones of C. pseudotuberculosis in Korea. Further, present isolates can threaten public health due to potentially virulent strains with all 18 virulence genes and non-susceptible strains to clinically important antibiotics (CIA) and highly important antibiotics. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first to investigate the genetic diversity and potential pathogenicity of C. pseudotuberculosis biovar ovis isolates from skin abscesses of KBNG in South Korea, and could provide useful information in controlling its infections.


Subject(s)
Corynebacterium pseudotuberculosis , Abscess/veterinary , Animals , Anti-Bacterial Agents/pharmacology , Corynebacterium pseudotuberculosis/genetics , Goats/microbiology , Phylogeny , Sheep
14.
Virol J ; 19(1): 66, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35410421

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is a macrophage-tropic arterivirus with extremely high genetic and pathogenic heterogeneity that causes significant economic losses in the swine industry worldwide. PRRSV can be divided into two species [PRRSV1 (European) and PRRSV2 (North American)] and is usually diagnosed and genetically differentiated into several lineages based on the ORF5 gene, which constitutes only 5% of the whole genome. This study was conducted to achieve nonselective amplification and whole-genome sequencing (WGS) based on a simplified sequence-independent, single-primer amplification (SISPA) technique with next-generation sequencing (NGS), and to genetically characterize Korean PRRSV field isolates at the whole genome level. METHODS: The SISPA-NGS method coupled with a bioinformatics pipeline was utilized to retrieve full length PRRSV genomes of 19 representative Korean PRRSV strains by de novo assembly. Phylogenetic analysis, analysis of the insertion and deletion (INDEL) pattern of nonstructural protein 2 (NSP2), and recombination analysis were conducted. RESULTS: Nineteen complete PRRSV genomes were obtained with a high depth of coverage by the SISPA-NGS method. Korean PRRSV1 belonged to the Korean-specific subtype 1A and vaccine-related subtype 1C lineages, showing no evidence of recombination and divergent genetic heterogeneity with conserved NSP2 deletion patterns. Among Korean PRRSV2 isolates, modified live vaccine (MLV)-related lineage 5 viruses, lineage 1 viruses, and nation-specific Korean lineages (KOR A, B and C) could be identified. The NSP2 deletion pattern of the Korean lineages was consistent with that of the MN-184 strain (lineage 1), which indicates the common ancestor and independent evolution of Korean lineages. Multiple recombination signals were detected from Korean-lineage strains isolated in the 2010s, suggesting natural interlineage recombination between circulating KOR C and MLV strains. Interestingly, the Korean strain GGYC45 was identified as a recombinant KOR C and MLV strain harboring the KOR B ORF5 gene and might be the ancestor of currently circulating KOR B strains. Additionally, two novel lineage 1 recombinants of NADC30-like and NADC34-like viruses were detected. CONCLUSION: Genome-wide analysis of Korean PRRSV isolates retrieved by the SISPA-NGS method and de novo assembly, revealed complex evolution and recombination in the field. Therefore, continuous surveillance of PRRSV at the whole genome level should be conducted, and new vaccine strategies for more efficient control of the virus are needed.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Genome, Viral , Phylogeny , Porcine Reproductive and Respiratory Syndrome/epidemiology , Porcine respiratory and reproductive syndrome virus/genetics , Recombination, Genetic , Swine
15.
Front Microbiol ; 11: 585622, 2020.
Article in English | MEDLINE | ID: mdl-33329454

ABSTRACT

Limosilactobacillus reuteri is a model symbiont that colonizes the guts of vertebrates in studies on host adaptation of the gut symbiont. Previous studies have investigated host-specific phylogenetic and functional properties by isolating the genomic sequence. This dependency on genome isolation is a significant bottleneck. Here, we propose a method to study the association between L. reuteri and its hosts directly from metagenomic reads without strain isolation using pan-genomes. We characterized the host-specificity of L. reuteri in metagenomic samples, not only in previously studied organisms (mice and pigs) but also in dogs. For each sample, two types of profiles were generated: (1) genome-based strain type abundance profiles and (2) gene composition profiles. Our profiles showed host-association of L. reuteri in both phylogenetic and functional aspects without depending on host-specific genome isolation. We observed not only the presence of host-specific lineages, but also the dominant lineages associated with the different hosts. Furthermore, we showed that metagenome-assembled genomes provide detailed insights into the host-specificity of L. reuteri. We inferred evolutionary trajectories of host-associative L. reuteri strains in the metagenomic samples by placing the metagenome-assembled genomes into a phylogenetic tree and identified novel host-specific genes that were unannotated in existing pan-genome databases. Our pan-genomic approach reduces the need for time-consuming and expensive host-specific genome isolation, while producing consistent results with previous host-association findings in mice and pigs. Additionally, we predicted associations that have not yet been studied in dogs.

16.
J Anim Sci Technol ; 62(2): 247-262, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32292932

ABSTRACT

Birth weight and subsequent weight gain is of critical importance in the survival and performance of piglets on a commercial swine farm setting. Oropharyngeal microbiome could influence immunity, and feeding behavior thus impacting health and weight gain. We used 16S rRNA gene sequencing to profile the composition and predicted metabolic functionality of the oropharyngeal microbiota in 8 piglets (4 with a birthweight ≤ 1.0 kg and 4 with a birthweight ≥ 1.7 kg) at 11, 26, and 63 days of age. We found 9 genera that were significantly associated with average daily gain (ADG) at 11 days (false discovery rate, FDR < 0.05) and 26 days of age (FDR < 0.1), respectively. The microbial functional profile revealed several pathways associated with ADG (FDR < 0.05). Among these, pathways related to degradation of catechols showed a positive association with ADG at 11, 26, and 63 days of age, implying a potential to breakdown the host-derived catecholamines. We also noted that pathways related to the biodegradation of nucleosides and nucleotides increased with ADG during the pre-weaning phase, while those involved in their biosynthesis decreased. Our findings provide insights into the oropharyngeal microbial memberships and metabolic pathways that are involved in a piglet's weight gain. Thus, providing a basis for the development of strategies aimed at improving weight gain in pigs.

17.
Korean J Thorac Cardiovasc Surg ; 52(5): 372-375, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31624716

ABSTRACT

A 55-year-old man was admitted to the trauma center after a car accident. Cardiac tamponade, traumatic aortic injury, and hemoperitoneum were diagnosed by ultrasonography. The trauma surgeon, cardiac surgeon, and interventional radiologist discussed the prioritization of interventions. Multi-detector computed tomography was carried out first to determine the severity and extent of the injuries, followed by exploratory sternotomy to repair a left auricle rupture. A damage control laparotomy was then performed to control mesenteric bleeding. Lastly, a descending thoracic aorta injury was treated by endovascular stenting. These procedures were performed in the hybrid-angio room. The patient was discharged on postoperative day 135, without complications.

18.
J Wildl Dis ; 54(4): 866-869, 2018 10.
Article in English | MEDLINE | ID: mdl-29791292

ABSTRACT

An adult male Eurasian river otter ( Lutra lutra) was diagnosed with systemic infection. Microbiologic findings identified Streptococcus suis serotype 2, clonal complex 28, and sequence type 629. Genetic analysis strongly suggested the transmission of S. suis isolate from pigs to wild animals through environmental contamination.


Subject(s)
Otters/microbiology , Sepsis/veterinary , Streptococcal Infections/veterinary , Streptococcus suis/isolation & purification , Ampicillin/therapeutic use , Animals , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Male , Meloxicam/therapeutic use , Republic of Korea/epidemiology , Sepsis/epidemiology , Sepsis/microbiology , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology
19.
J Vet Med Sci ; 80(6): 851-860, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29618667

ABSTRACT

The broad-spectrum lytic capability of Salmonella bacteriophages against various Salmonella species was evaluated to determine their potential as an alternative for antibiotics, and the safety and preventive effects of the bacteriophages were assessed on mice and pigs. Four bacteriophage cocktails were prepared using 13 bacteriophages, and the lytic capability of the four bacteriophage cocktails was tested using Salmonella reference strains and field isolates. Bacteriophage cocktail C (SEP-1, SGP-1, STP-1, SS3eP-1, STP-2, SChP-1, SAP-1, SAP-2; ≥109 pfu/ml) showed the best lytic activity against the Salmonella reference strains (100% of 34) and field isolates (92.5% of 107). Fifty mice were then orally inoculated with bacteriophage cocktail C to determine the distribution of bacteriophages in various organs, blood and feces. The effects of bacteriophages on Salmonella infection in weaned pigs (n=15) were also evaluated through an experimental challenge with Salmonella Typhimurium after treatment with bacteriophage cocktail C. All mice exhibited distribution of the bacteriophages in all organs, blood and feces until 15 days post infection (dpi). After 35 dpi, bacteriophages were not detected in any of these specimens. As demonstrated in a pig challenge study, treatment with bacteriophage cocktail C reduced the level of Salmonella shedding in feces. The metagenomic analyses of these pig feces also revealed that bacteriophage treatment decreased the number of species of the Enterobacteriaceae family without significant disturbance to the normal fecal flora. This study showed that bacteriophages effectively controlled Salmonella in a pig challenge model and could be a good alternative for antibiotics to control Salmonella infection.


Subject(s)
Phage Therapy/veterinary , Salmonella Infections/therapy , Salmonella Phages , Swine Diseases/therapy , Animals , Bacteriolysis , Bacteriophages , Feces/microbiology , Female , Metagenome , Mice , Mice, Inbred BALB C , Salmonella typhimurium , Swine , Weaning
20.
J Vet Med Sci ; 80(2): 272-279, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29249747

ABSTRACT

Nervous necrosis virus (NNV), also known as betanodavirus, has been recently implicated in mass mortalities of cultured marine fish. An effective vaccine is urgently needed to protect fish against this virus. However, parenteral immunization methods are very stressful. Individual immunization for thousands of fish is very labor intensive and expensive. Therefore, we expressed NNV coat protein in tobacco chloroplasts and used it as an oral vaccine to induce immunities in fish followed by challenges with NNV. Our results revealed that mice (IgG and IgA) and fish (IgM) immunized with the oral vaccine developed significantly higher antibody titers against the NNV coat protein. Fish were partially protected against viral challenge. Taken together, our results demonstrated that a plant-based vaccine could effectively induce immune response and protect groupers against NNV. The present method could be used to develop oral fish vaccine in the future.


Subject(s)
Capsid Proteins/immunology , Fish Diseases/prevention & control , Nicotiana/genetics , Nodaviridae/immunology , Perciformes , RNA Virus Infections/veterinary , Viral Vaccines/immunology , Administration, Oral , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Capsid Proteins/administration & dosage , Capsid Proteins/genetics , Capsid Proteins/isolation & purification , Cloning, Molecular/methods , Escherichia coli/genetics , Female , Fish Diseases/immunology , Fish Diseases/virology , Immunization/veterinary , Mice , Mice, Inbred ICR , RNA Virus Infections/immunology , RNA Virus Infections/prevention & control , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...