Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(1): 1362-1374, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222601

ABSTRACT

Previously, refractory high-entropy alloys (HEAs) with high crystallinity were synthesized using a configurable target without heat treatment. This study builds upon prior investigations to develop nonrefractory elemental HEAs with low crystallinity using a novel target system. Different targets with various elemental compositions, i.e., Co20Cr20Ni20Mn20Mo20 (target 1), Co30Cr15Ni25Mn15Mo15 (target 2), and Co15Cr25Cu20Mn20Ni20 (target 3), are designed to modify the phase structure. The elemental composition is varied to ensure face-centered cubic (FCC) or body-centered cubic (BCC) phase stabilization. In target 1, the FCC and BCC phases coexist, whereas targets 2 and 3 are characterized by a single FCC phase. Thin films based on targets 1 and 2 exhibit crystalline phases followed by annealing, as indicated by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. In contrast, target 3 yields crystalline thin films without any heat treatment. The thin-film coatings are classified based on the atomic size difference (δ). The δ value for the target with the elemental composition CoCrMoMnNi is 9.7, i.e., ≥6.6, corresponding to an HEA with an amorphous phase. However, the annealed thin film is considered a multiprincipal elemental alloy. In contrast, δ for the CoCrCuMnNi HEA is 5, i.e., ≤6.6, upon the substitution of Mo with Cu, and a solid solution phase is formed without any heat treatment. Thus, the degree of crystallinity can be controlled through heat treatment and the manipulation of δ in the absence of heat treatment. The XRD results clarify the crystallinity and phase structure, indicating the presence of FCC or a combination of FCC and BCC phases. The outcomes are consistent with those obtained through the analysis of the valence electron concentration based on X-ray photoelectron spectroscopy. Furthermore, a selected area electron diffraction analysis confirms the presence of both amorphous and crystalline structures in the HEA thin films. Additionally, phase evolution and segregation are observed at 500 °C.

2.
Int J Mol Sci ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38279351

ABSTRACT

The effects of TiO2 nanotube (TNT) and reduced graphene oxide (rGO) deposition onto titanium, which is widely used in dental implants, on Streptococcus mutans (S. mutans) and preosteoblastic cells were evaluated. TNTs were formed through anodic oxidation on pure titanium, and rGO was deposited using an atmospheric plasma generator. The specimens used were divided into a control group of titanium specimens and three experimental groups: Group N (specimens with TNT formation), Group G (rGO-deposited specimens), and Group NG (specimens under rGO deposition after TNT formation). Adhesion of S. mutans to the surface was assessed after 24 h of culture using a crystal violet assay, while adhesion and proliferation of MC3T3-E1 cells, a mouse preosteoblastic cell line, were evaluated after 24 and 72 h through a water-soluble tetrazolium salt assay. TNT formation and rGO deposition on titanium decreased S. mutans adhesion (p < 0.05) and increased MC3T3-E1 cell adhesion and proliferation (p < 0.0083). In Group NG, S. mutans adhesion was the lowest (p < 0.05), while MC3T3-E1 cell proliferation was the highest (p < 0.0083). In this study, TNT formation and rGO deposition on a pure titanium surface inhibited the adhesion of S. mutans at an early stage and increased the initial adhesion and proliferation of preosteoblastic cells.


Subject(s)
Graphite , Nanotubes , Streptococcus mutans , Mice , Animals , Titanium/pharmacology , Titanium/chemistry , Surface Properties , Nanotubes/chemistry
3.
ACS Omega ; 8(31): 28333-28343, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37576658

ABSTRACT

This study presents a novel synthesis route for high-entropy alloys (HEAs) and high-entropy metallic glass (HEMG) using radio frequency (RF) magnetron sputtering and controlling the HEA phase selection according to atomic size difference (δ) and film thickness. The preparation of HEAs using sputtering requires either multitargets or the preparation of a target containing at least five distinct elements. In developing HEA-preparation techniques, the emergence of a novel sputtering target system is promising to prepare a wide range of HEAs. A new HEA-preparation technique is developed to avoid multitargets and configure the target elements with the required components in a single target system. Because of a customizable target facility, initially, a TiZrNbMoTaCr target emerged with an amorphous phase owing to a high δ value of 7.6, which was followed by a solid solution (SS) by lowering the δ value to 5 (≤6.6). Thus, this system was tested for the first time to prepare TiZrNbMoTa HEA and TiZrNbMoTa HEMG via RF magnetron sputtering. Both films were analyzed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy, field emission scanning electron microscopy cross-sectional thickness, and atomic force microscopy (AFM). Furthermore, HEMG showed higher hardness 10.3 (±0.17) GPa, modulus 186 (±7) GPa, elastic deformation (0.055) and plastic deformation (0.032 GPa), smooth surface, lower corrosion current density (Icorr), and robust cell viability compared to CP-Ti and HEA. XRD analysis of the film showed SS with a body-centered cubic (BCC) structure with (110) as the preferred orientation. The valence electron concentration [VEC = 4.8 (<6.87)] also confirmed the BCC structure. Furthermore, the morphology of the thin film was analyzed through AFM, revealing a smooth surface for HEMG. Inclusively, the concept of configurational entropy (ΔSmix) is applied and the crystalline phase is achieved at room temperature, optimizing the processing by avoiding further furnace usage.

4.
Int J Mol Sci ; 24(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37240234

ABSTRACT

The alternative antibacterial treatment photothermal therapy (PTT) significantly affects oral microbiota inactivation. In this work, graphene with photothermal properties was coated on a zirconia surface using atmospheric pressure plasma, and then the antibacterial properties against oral bacteria were evaluated. For the graphene oxide coating on the zirconia specimens, an atmospheric pressure plasma generator (PGS-300, Expantech, Suwon, Republic of Korea) was used, and an Ar/CH4 gas mixture was coated on a zirconia specimen at a power of 240 W and a rate of 10 L/min. In the physiological property test, the surface properties were evaluated by measuring the surface shape of the zirconia specimen coated with graphene oxide, as well as the chemical composition and contact angle of the surface. In the biological experiment, the degree of adhesion of Streptococcus mutans (S. mutans) and Porphyromonas gingivalis (P. gingivalis) was determined by crystal violet assay and live/dead staining. All statistical analyzes were performed using SPSS 21.0 (SPSS Inc., Chicago, IL, USA). The group in which the zirconia specimen coated with graphene oxide was irradiated with near-infrared rays demonstrated a significant reduction in the adhesion of S. mutans and P. gingivalis compared with the group not irradiated. The oral microbiota inactivation was reduced by the photothermal effect on the zirconia coated with graphene oxide, exhibiting photothermal properties.


Subject(s)
Graphite , Graphite/pharmacology , Graphite/chemistry , Surface Properties , Anti-Bacterial Agents/pharmacology
5.
Nanomaterials (Basel) ; 13(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36986017

ABSTRACT

High-entropy alloys (HEAs) contain more than five alloying elements in a composition range of 5-35% and with slight atomic size variation. Recent narrative studies on HEA thin films and their synthesis through deposition techniques such as sputtering have highlighted the need for determining the corrosion behaviors of such alloys used as biomaterials, for example, in implants. Coatings composed of biocompatible elements such as titanium, cobalt, chrome, nickel, and molybdenum at the nominal composition of Co30Cr20Ni20Mo20Ti10 were synthesized by means of high-vacuum radiofrequency magnetron (HVRF) sputtering. In scanning electron microscopy (SEM) analysis, the coating samples deposited with higher ion densities were thicker than those deposited with lower ion densities (thin films). The X-ray diffraction (XRD) results of the thin films heat treated at higher temperatures, i.e., 600 and 800 °C, revealed a low degree of crystallinity. In thicker coatings and samples without heat treatment, the XRD peaks were amorphous. The samples coated at lower ion densities, i.e., 20 µAcm-2, and not subjected to heat treatment yielded superior results in terms of corrosion and biocompatibility among all the samples. Heat treatment at higher temperatures led to alloy oxidation, thus compromising the corrosion property of the deposited coatings.

6.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834746

ABSTRACT

Peri-implantitis is an inflammatory disease similar to periodontitis, caused by biofilms formed on the surface of dental implants. This inflammation can spread to bone tissues and result in bone loss. Therefore, it is essential to inhibit the formation of biofilms on the surface of dental implants. Thus, this study examined the inhibition of biofilm formation by treating TiO2 nanotubes with heat and plasma. Commercially pure titanium specimens were anodized to form TiO2 nanotubes. Heat treatment was performed at 400 and 600 °C, and atmospheric pressure plasma was applied using a plasma generator (PGS-200, Expantech, Suwon, Republic of Korea). Contact angles, surface roughness, surface structure, crystal structure, and chemical compositions were measured to analyze the surface properties of the specimens. The inhibition of biofilm formation was assessed using two methods. The results of this study showed that the heat treatment of TiO2 nanotubes at 400 °C inhibited the adhesion of Streptococcus mutans (S. mutans), associated with initial biofilm formation, and that heat treatment of TiO2 nanotubes at 600 °C inhibited the adhesion of Porphyromonas gingivalis (P. gingivalis), which causes peri-implantitis. Applying plasma to the TiO2 nanotubes heat-treated at 600 °C inhibited the adhesion of S. mutans and P. gingivalis.


Subject(s)
Dental Implants , Nanotubes , Peri-Implantitis , Humans , Nanotubes/chemistry , Biofilms , Titanium/chemistry , Surface Properties , Streptococcus mutans
7.
J Colloid Interface Sci ; 633: 53-59, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36434935

ABSTRACT

An electrochemical nitrogen reduction reaction (ENRR) is considered a promising alternative for the traditional Haber-Bosch process. In this study, we present a method for improving the ENRR by controlling the wettability of the catalyst surface, suppressing the hydrogen evolution reaction (HER) while facilitating N2 adsorption. Reduced-graphene oxide (rGO) with a hydrophobic surface property and a contact angle (C.A.) of 59° was synthesized through a high-density atmospheric plasma deposition. Two other hydrophilic and superhydrophobic surfaces with a C.A. of 15° and 150° were developed through additional argon plasma and heat treatment of as-deposited rGO, respectively. The ENRR results showed that the ammonia yield and Faradaic efficiency tended to increase with increasing hydrophobicity. Electrochemical measurements reveal that superhydrophobic rGO achieves a higher Faradaic efficiency (5.73 %) at -0.1 V (vs RHE) and a higher NH3 yield (9.77 µg h-1 cm-2) at -0.4 V (vs RHE) in a 0.1 M KOH electrolyte. In addition, the computational fluid dynamics simulation confirmed that the amount of time the N2 gas remains on the surface could increase by improving the hydrophobicity of the catalytic surface. This study inspires the development of the rGO electrocatalyst through surface wettability modification for boosting ammonia electrosynthesis.


Subject(s)
Ammonia , Graphite , Wettability , Nitrogen
8.
Materials (Basel) ; 15(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35955282

ABSTRACT

Plasma treatment on a zirconia surface prevents bacterial contamination and maintains osteoblast activity. To assess the degree of adhesion of Porphyromonas gingivalis on a zirconia surface after non-thermal plasma (NTP) treatment, specimens were treated with plasma for 60, 300, and 600 s, after which P. gingivalis was inoculated onto the surface and incubated for 48 h. To assess osteoblast activity after NTP treatment, osteoblasts (MC3T3-E1) were dispensed onto the specimens contaminated with P. gingivalis immediately after NTP for 60 and 120 s, followed by incubation for 48, 72, and 96 h. P. gingivalis was cultured after 60 s of NTP treatment of zirconia. The NTP and control groups showed no significant difference (p = 0.91), but adhesion was significantly increased following NTP treatment for 300 s or longer (300, 600 s groups) (p < 0.05). After NTP treatment of P. gingivalis-contaminated zirconia, osteoblast activity significantly increased at 72 and 96 h (I60 and I120 s group) in the groups treated with plasma (p < 0.017). Application of NTP to dental zirconia implants for 60 s not only inhibits the proliferation of P. gingivalis, which causes peri-implantitis but also increases osseointegration on zirconia surfaces contaminated with P. gingivalis.

9.
Vaccines (Basel) ; 9(12)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34960253

ABSTRACT

The emergence of new viral infections has increased over the decades. The novel virus is one such pathogen liable for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, popularly known as coronavirus disease 2019 (COVID-19). Most fatalities during the past century's influenza pandemics have cooperated with bacterial co/secondary infections. Unfortunately, many reports have claimed that bacterial co-infection is also predominant in COVID-19 patients (COVID-19 associated co/secondary infection prevalence is up to 45.0%). In the COVID-19 pandemic, Streptococcus pneumoniae is the most common coinfecting pathogen. Half of the COVID-19 mortality cases showed co-infection, and pneumonia-related COVID-19 mortality in patients >65 years was 23%. The weakening of immune function caused by COVID-19 remains a high-risk factor for pneumococcal disease. Pneumococcal disease and COVID-19 also have similar risk factors. For example, underlying medical conditions on COVID-19 and pneumococcal diseases increase the risk for severe illness at any age; COVID-19 is now considered a primary risk factor for pneumococcal pneumonia and invasive pneumococcal disease. Thus, pneumococcal vaccination during the COVID-19 pandemic has become more critical than ever. This review presents positive studies of pneumococcal vaccination in patients with COVID-19 and other medical conditions and the correlational effects of pneumococcal disease with COVID-19 to prevent morbidity and mortality from co/secondary infections and superinfections. It also reports the importance and role of pneumococcal vaccination during the current COVID-19 pandemic era to strengthen the global health system.

10.
Int J Nanomedicine ; 16: 7307-7317, 2021.
Article in English | MEDLINE | ID: mdl-34737568

ABSTRACT

PURPOSE: This paper presents a technique for developing a novel surface for dental implants using a combination of nitriding and anodic oxidation, followed by the deposition of graphene oxide using atmospheric plasma. The effects of various surface treatments on bacterial adhesion and osteoblast activation were also evaluated. METHODS: CP titanium (control) was processed into disk-shaped specimens. Nitriding was conducted using vacuum nitriding, followed by anodic oxidation, which was performed in an electrolyte using a DC power supply, to form the novel "mulberry surface." Graphene oxide deposition was performed using atmospheric plasma with an inflow of carbon sources. After analyzing the sample surfaces, antibacterial activity was evaluated using Streptococcus mutans and Porphyromonas gingivalis bacteria. The viability, adhesion, proliferation, and differentiation of osteoblasts were also assessed. Analysis of variance (ANOVA) with Tukey's post-hoc test was used to calculate statistical differences. RESULTS: We observed that the mulberry surface was formed on samples treated with nitriding and anodic oxidation, and these samples exhibited more effective antibacterial activity than the control. We also found that the samples with additional graphene oxide deposition exhibited better biocompatibility, which was validated by osteoblast adhesion, proliferation, and differentiation. CONCLUSION: The development of the mulberry surface along with graphene oxide deposition inhibits bacterial adhesion to the implant and enhances the adhesion, proliferation, and differentiation of osteoblasts. These results indicate that the mulberry surface and graphene oxide deposition together can inhibit peri-implantitis and promote osseointegration.


Subject(s)
Morus , Nanopores , Graphite , Osteoblasts , Surface Properties , Titanium
11.
Int J Nanomedicine ; 16: 7169-7180, 2021.
Article in English | MEDLINE | ID: mdl-34707356

ABSTRACT

INTRODUCTION: Paclitaxel (PTX) is a conventional chemotherapeutic drug that effectively treats various cancers. The cellular uptake and therapeutic potential of PTX are limited by its slow penetration and low solubility in water. The development of cancer chemotherapy methods is currently facing considerable challenges with respect to the delivery of the drugs, particularly in targeting the tumor site without exerting detrimental effects on the healthy surrounding cells. One possibility for improving the therapeutic potential is through the development of tumor-targeted delivery methods. METHODS: We successfully synthesized paclitaxel-MHI-148 conjugates (PTX-MHI) by coupling PTX with the tumor-targeting heptamethine cyanine dye MHI-148. Synthesis and purification were characterized using the absorbance spectrum and the results of time-of-flight mass spectrometry. Cellular uptake and cytotoxicity studies were conducted in vitro and in vivo. RESULTS: PTX-MHI accumulates in tumor cells but not in normal cells, as observed by in vitro near-infrared fluorescent (NIRF) imaging along with in vivo NIRF imaging and organ biodistribution studies. We observed that MHI-148-conjugated PTX shows greater efficiency in cancer cells than PTX alone, even in the absence of light treatment. PTX-MHI could also be used for specific drug delivery to intracellular compartments, such as the mitochondria and lysosomes of cancer cells, to improve the outcomes of tumor-targeting therapy. CONCLUSION: The results indicated that PTX-MHI-mediated cancer therapy exerts an excellent inhibitory effect on colon carcinoma (HT-29) cell growth with low toxicity in normal fibroblasts (NIH3T3).


Subject(s)
Nanoparticles , Paclitaxel , Animals , Carbocyanines , Cell Line, Tumor , Drug Delivery Systems , Indoles , Mice , Mice, Nude , NIH 3T3 Cells , Tissue Distribution
12.
Int J Nanomedicine ; 16: 5745-5754, 2021.
Article in English | MEDLINE | ID: mdl-34471350

ABSTRACT

OBJECTIVE: To determine the effects of graphene oxide (GO) deposition (on a zirconia surface) on bacterial adhesion and osteoblast activation. METHODS: An atmospheric pressure plasma generator (PGS-300) was used to coat Ar/CH4 mixed gas onto zirconia specimens (15-mm diameter × 2.5-mm thick disks) at a rate of 10 L/min and 240 V. Zirconia specimens were divided into two groups: uncoated (control; Zr) group and GO-coated (Zr-GO) group. Surface characteristics and element structures of each specimen were evaluated by field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and contact angle. Additionally, crystal violet staining was performed to assess the adhesion of Streptococcus mutans. WST-8 and ALP (Alkaline phosphatase) assays were conducted to evaluate MC3T3-E1 osteoblast adhesion, proliferation, and differentiation. Statistical analysis was calculated by the Mann-Whitney U-test. RESULTS: FE-SEM and Raman spectroscopy demonstrated effective GO deposition on the zirconia surface in Zr-GO. The attachment and biofilm formation of S. mutans was significantly reduced in Zr-GO compared with that of Zr (P < 0.05). While no significant differences in cell attachment of MC3T3-1 were observed, both proliferation and differentiation were increased in Zr-GO as compared with that of Zr (P < 0.05). SIGNIFICANCE: GO-coated zirconia inhibited the attachment of S. mutans and stimulated proliferation and differentiation of osteoblasts. Therefore, GO-coated zirconia can prevent peri-implantitis by inhibiting bacterial adhesion. Moreover, its osteogenic ability can increase bone adhesion and success rate of implants.


Subject(s)
Anti-Infective Agents , Dental Implants , Cell Proliferation , Graphite , Osteoblasts , Osteogenesis , Surface Properties , Titanium , Zirconium
13.
Vaccines (Basel) ; 9(3)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800349

ABSTRACT

The roles of the Fc receptor (FcR) in protection or inflammatory disease after respiratory syncytial virus (RSV) vaccination and infection remain unknown. Virus-like particles containing RSV fusion proteins (RSV F-VLPs) induce T-helper type 1 antibody responses and protection against RSV. Heterologous RSV F-VLP prime and formalin-inactivated RSV (FI-RSV) boost vaccination has been reported to be effective in providing protection without inflammatory disease. Here, we investigated whether the FcRγ-chain is important for immune protection by the heterologous F-VLP and FI-RSV vaccination using FcRγ-chain knockout (-/-) mice. RSV F-VLP-primed and FI-RSV-boosted FcRγ -/- mice displayed less protective efficacy, as shown by higher lung viral titers upon RSV challenge, compared to RSV F-VLP-primed and FI-RSV-boosted immunized wild-type mice. RSV F-VLP and FI-RSV immunization induced lower levels of neutralizing activity and interferon-γ-producing CD8 T-cells in the bronchoalveolar lavage cells of FcRγ -/- mice than in those of wild-type mice. In addition, FcRγ -/- mice displayed a trend of enhancing lung histopathology after RSV vaccination and infection. This study suggests that the FcRγ-chain plays an important role in inducing antiviral protection and CD8 T-cell responses in RSV F-VLP prime and FI-RSV boost vaccination after RSV infections.

14.
J Nanosci Nanotechnol ; 21(7): 3683-3688, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33715674

ABSTRACT

During the design of membranes for guided tissue regeneration (GTR) to treat periodontal diseases, infection of the exposed membranes and postoperative complications can be prevented by increasing bacterial resistance. This study evaluated the antibacterial activity of PCL/ZnO membranes and their effect on cell viability via addition of antibacterial zinc oxide (ZnO) nanoparticles to a biocompatible and biodegradable material such as polycaprolactone (PCL). Neat PCL membranes and PCL/ZnO membranes containing 0.5 wt.% and 5 wt.% ZnO were produced, and divided into PCL (0% ZnO), LZ (0.5 wt.% ZnO), and HZ (5 wt.% ZnO) groups, respectively. The surface characteristics of the membranes including morphological features and changes in composition were analyzed. Adhesion of bacteria, including Streptococcus mutans and Porphyromonas gingi-valis, was analyzed using a crystal violet assay. The proliferation of MC3T3-E1 osteoblasts was evaluated using a WST-8 assay. Significant differences were analyzed using the Kruskal-Wallis test (P < 0.05). The results of groups were compared using the Mann-Whitney test (P < 0.017). ZnO nanoparticles were dispersed in the PCL matrix of PCL/ZnO membranes. Compared with neat PCL membranes, their ability to form crystals decreased and their amorphous structure increased. The adhesion of S. mutans and P. gingivalis in the LZ and HZ groups containing ZnO was significantly decreased compared with that of the neat PCL membranes (P < 0.05). No significant differences were observed in the proliferation of MC3T3-E1 cells between the PCL/ZnO membranes and the neat PCL membranes both on days 2 and 5 of culture (P > 0.05). This study has demonstrated that the PCL membranes carrying the ZnO nanoparticles inhibited bacterial adhesion without affecting the viability of osteoblasts, suggesting the potential application of ZnO in GTR to increase antibacterial activity of membranes.


Subject(s)
Nanoparticles , Zinc Oxide , Anti-Bacterial Agents/pharmacology , Cell Survival , Polyesters , Zinc Oxide/pharmacology
15.
Int J Nanomedicine ; 16: 1509-1523, 2021.
Article in English | MEDLINE | ID: mdl-33658781

ABSTRACT

PURPOSE: The study was intended to create a uniform zirconia layer even on the surface of complex structures via atomic layer deposition (ALD). The impact of crystalline zirconia deposited by ALD on bacterial adhesion and osteoblast viability was assessed via surface treatment of dental implants. METHODS: Amorphous zirconia was deposited using an atomic layer deposition reactor (Atomic Classic, CN1, Hwaseong, Korea) on titanium discs. Heating the samples at 400°C resulted in crystallization. Samples were divided into three groups: the control group, the group carrying amorphous ALD-zirconia (Z group), and the heat-treated group following zirconia ALD deposition (ZH group).The surface of each sample was analyzed, followed by the assessment of adhesion of Streptococcus mutans and Porphyromonas gingivalis, and viability and differentiation of MC3T3-E1 cells. RESULTS: The adhesion of S. mutans and P. gingivalis was significantly reduced in the Z and ZH groups compared with the control group (P < 0.05). The viability of MC3T3-E1 cells was significantly increased in the ZH group compared with the control group (P < 0.001), while no significant differences were observed in the Z group (P > 0.05). Differentiation of MC3T3-E1 cells showed a marginally significant increase in the ZH group compared with the control group (P < 0.1), while no significant differences were found in the Z group (P > 0.1). CONCLUSION: Compared with the pure titanium group, the groups that were coated with zirconia via ALD showed a decreased adhesion of S. mutans during the early stages of biofilm formation and P. gingivalis adhesion inducing peri-implantitis, and an increase in MC3T3-E1 cell viability and differentiation. The findings indicate the possibility of treating the implant surface to reduce peri-implantitis and improve osseointegration.


Subject(s)
Bacterial Adhesion , Osteoblasts/cytology , Titanium/pharmacology , Zirconium/chemistry , Animals , Bacterial Adhesion/drug effects , Cell Differentiation/drug effects , Cell Line , Cell Survival/drug effects , Humans , Mice , Microscopy, Atomic Force , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/ultrastructure , Photoelectron Spectroscopy , Spectrometry, X-Ray Emission , Surface Properties , X-Ray Diffraction
16.
Int J Nanomedicine ; 15: 5803-5811, 2020.
Article in English | MEDLINE | ID: mdl-32821102

ABSTRACT

INTRODUCTION: Photodynamic therapy (PDT), which induces tissue damage by exposing tissue to a specific wavelength of light in the presence of a photosensitizer and oxygen, is a promising alternative treatment that could be used as an adjunct to chemotherapy and surgery in oncology. Cell-penetrating peptides (CPPs) with high arginine content, such as protamine, have membrane translocation and lysosome localization activities. They have been used in an extensive range of drug delivery applications. METHODS: We conjugated cell-penetrating peptides (CPPs) with methylene blue (MB) and then purification by FPLC. Synthesis structure was characterized by the absorbance spectrum, FPLC, Maldi-TOF, and then evaluated cell viability by cytotoxicity assay after photodynamic therapy (PDT) assay. An uptake imaging assay was used to determine the sites of MB and MB-Pro in subcellular compartments. RESULTS: In vitro assays showed that MB-Pro has more efficient photodynamic activities than MB alone for the colon cancer cells, owing to lysosome rupture causing the rapid necrotic cell death. In this study, we coupled protamine with MB for high efficacy PDT. The conjugates localized in the lysosomes and enhanced the efficiency of PDT by inducing necrotic cell death, whereas PDT with non-coupled MB resulted in only apoptotic processes. DISCUSSION: Our research aimed to enhance PDT by engineering the photosensitizers using CPPs coupled with methylene blue (MB). MB alone permeates through the cell membrane and distributes into the cytoplasm, whereas coupling of MB dye with CPPs localizes the MB through an endocytic mechanism to a specific organelle where the localized conjugates enhance the generation of reactive oxygen species (ROS) and induce cell damage.


Subject(s)
Cell-Penetrating Peptides/pharmacology , Methylene Blue/pharmacology , Photochemotherapy , Apoptosis/drug effects , Cell Death/drug effects , Cell Survival/drug effects , Drug Delivery Systems , HT29 Cells , Humans , Imaging, Three-Dimensional , Lysosomes/drug effects , Lysosomes/metabolism , Methylene Blue/chemistry , Mitochondria/drug effects , Mitochondria/metabolism
17.
Int J Nanomedicine ; 15: 5813-5824, 2020.
Article in English | MEDLINE | ID: mdl-32821103

ABSTRACT

INTRODUCTION: This paper presents a novel technique for the synthesis of graphene oxide (GO) with various surface features using high-density atmospheric plasma deposition. Furthermore, to investigate the use of hydrophobic, super-hydrophobic, and hydrophilic graphene in biological applications, we synthesized hydrophobic, super-hydrophobic, and hydrophilic graphene oxides by additional heat treatment and argon plasma treatment, respectively. In contrast to conventional fabrication procedures, reduced graphene oxide (rGO) formed under low pressure and high-temperature environment using a new synthesis method-developed and described in this study-offers a convenient deposition method on any kind surface with controlled wettability. METHODS: High density at atmospheric plasma is used for the synthesis of rGO and GO and its biocompatibility based on various wetting properties was evaluated using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and the viability of cells in response to rGO and GO with various surface features was investigated. Structural integrity was characterized by Raman spectroscopy, FESEM and FE-TEM. Wettability was measured via contact angle method and confirmed with XPS analysis. RESULTS: We found that GO coating with a hydrophilic feature is more biocompatible than other surfaces as observed in case of fibroblast cells. We have shown that wettability-controlled by GO deposition-influences biocompatibilities and antibacterial effect of biomaterial surfaces. DISCUSSION: Measuring the contact angle, it is found that contact angle for hydrophobic is increased to 150.590 and reduced to 11.580 by heat and argon plasma treatment, respectively, from 75.880 that was initially in the case of hydrophobic surface. XPS analysis confirmed various oxygen-containing functional groups transforming as deposited hydrophobic surface into superhydrophobic and hydrophilic surface. Thus, we have proposed a new, direct, cost-effective, and highly productive method for the synthesis of rGO and GO-with various surface properties-for biological applications. Similarly, for the dental implant application, the Streptococcus mutans was used as an antibacterial effect and found that S. mutans grows slowly on hydrophilic surface. Thus, antibacterial effect was prominent on GO with hydrophilic surface.


Subject(s)
Atmosphere/chemistry , Graphite/chemical synthesis , Plasma Gases/pharmacology , Animals , Cell Death/drug effects , Cell Line , Graphite/chemistry , Mice , Microbial Viability/drug effects , Oxidation-Reduction , Streptococcus mutans/drug effects , Water , Wettability
18.
J Nanosci Nanotechnol ; 20(9): 5680-5682, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32331158

ABSTRACT

Various attempts to modify the surface of dental implants have been made in order to improve the adhesion of osteocytes. Plasma treatment on dental implants has been suggested to improve osseointegration. This study examined the effect on cell viability with the passage of time after atmospheric plasma treatment. An atmospheric plasma generator (PGS-200 Plasma generator, Expantech Co., Korea) was used and the gas was mixed with the Ar2(99%)/O2(1%) composition and applied to the specimens. The passage of time was set to 7 immediately after treatment, after 30 minutes of treatment, after 60 minutes of treatment, after 90 minutes of treatment, after 24 hours of treatment, and after 48 hours of treatment. Surface property change with the passage of time after plasma treatment were confirmed by FE-SEM, surface roughness and X-ray photoelectron spectroscopy. Cell viability was evaluated by the WST-8 assay. The data were analyzed statistically using a 1-way ANOVA and Tukey's multiple comparisons test (α = .05). It was confirmed that the chemical composition of the surface changes as the passage of time increases after plasma treatment. The viability of L-929 cells was the highest immediately after plasma treatment, and cell viability decreased with increasing the passage of time. As a result of this study, it was confirmed that passage of time is a very important factor for the plasma treated surface.

19.
J Nanosci Nanotechnol ; 20(9): 5742-5745, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32331171

ABSTRACT

Periimplantitis is an inflammation similar to periodontitis, and is caused by biofilms formed on the surface of dental implants. Application of plasma on biomaterials has been reported to decrease the initial adhesion of microorganism by causing chemical changes without changing the surface morphology. The purpose of this study is to evaluate the effect of inhibition of biofilm formation on the elapsed time after plasma treatment. Non thermal plasma generator (PGS-200 Plasma generator, Expantech Co., Korea) was applied to the specimens. The elapsed time in the atmosphere was set to 5 immediately after treatment, after 30 minutes of treatment, after 60 minutes of treatment, after 90 minutes of treatment. Surface property change with the elapsed time in the atmosphere after plasma treatment were confirmed by X-ray photoelectron spectroscopy and contact angle. Inhibition of biofilm formation was evaluated by the fluorescent nucleic acid staining. It was confirmed that the chemical composition and bonding state of the surface changes as the elapsed time in the atmosphere increases after plasma treatment. The adhesion of Porphyromonas gingivalis was the lowest immediately after plasma treatment, and increased again with increasing elapsed time in the atmosphere after plasma treatment. As a result of this study, it was confirmed that elapsed time in the atmosphere is a very important factor for inhibition of biofilm formation.


Subject(s)
Nanotubes , Titanium , Atmosphere , Biofilms , Surface Properties
20.
J Nanosci Nanotechnol ; 20(9): 5771-5774, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32331177

ABSTRACT

The purpose of this study was to examine the effect of plasma treatment by treating the surface of Co-Cr alloy, Ti-6Al-4V alloy, and CP-Ti alloy as a material for denture metal frameworks with non-thermal atmospheric pressure plasma (NTAPP) and measuring their shear bond strength (SBS) with a heat-cured resin. 20 specimens were prepared for each of Co-Cr, Ti-6Al-4V, and CP-Ti alloys. Each metal alloy group was divided into the following subgroups depending on NTAPP treatment: C (Co-Cr alloy without plasma), T (CP-Ti without plasma), A (Ti-6Al-4V alloy without plasma), CP (Co-Cr alloy with plasma), TP (CP-Ti with plasma) and AP (Ti-6Al-4V alloy with plasma). Specimens were treated with a metal conditioner and bonded to a denture base resin. SBS was measured using a universal testing machine. All data obtained were statistically analyzed using two-way analysis of variance (ANOVA), Tukey's honestly significant difference (HSD) test, and independent t-test. The mean values (SD) of SBS (MPa) were: 10.31 (1.19) for C group; 12.43 (0.98) for T group; 13.75 (2.02) for A group; 13.53 (1.61) for CP group; 16.87 (1.55) for TP group; 17.46 (1.65) for AP group. The SBS of the AP group was the highest while that of the C group was the lowest. SBS of specimen treated with NTAPP was significantly increased regardless of metal alloy types (p < 0.001). Within the limitations of this study, NTAPP can increases the SBS of Co-Cr alloy, CP-Ti alloy, and Ti-6Al-4V alloy with a denture base resin.


Subject(s)
Denture Bases , Titanium , Alloys , Chromium Alloys , Dental Alloys , Materials Testing , Shear Strength , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...