Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(46): eadd9419, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36383671

ABSTRACT

Two-dimensional (2D) histopathology based on the observation of thin tissue slides is the current paradigm in diagnosis and prognosis. However, labeling strategies in conventional histopathology are limited in compatibility with 3D imaging combined with tissue clearing techniques. Here, we present a rapid and efficient volumetric imaging technique of pathological tissues called 3D tissue imaging through de novo formation of fluorophores, or 3DNFC, which is the integration of citrate-based fluorogenic reaction DNFC and tissue clearing techniques. 3DNFC markedly increases the fluorescence intensity of tissues by generating fluorophores on nonfluorescent amino-terminal cysteine and visualizes the 3D structure of the tissues to provide their anatomical morphology and volumetric information. Furthermore, the application of 3DNFC to pathological tissue achieves the 3D reconstruction for the unbiased analysis of diverse features of the disorders in their natural context. We suggest that 3DNFC is a promising volumetric imaging method for the prognosis and diagnosis of pathological tissues.

2.
J Biotechnol ; 340: 57-63, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34506803

ABSTRACT

Enterokinase is one of the hydrolases that catalyze hydrolysis to regulate biological processes in intestinal visceral mucosa. Enterokinase plays an essential role in accelerating the process of protein digestion as it converts trypsinogen into active trypsin by accurately recognizing and cleaving a specific peptide sequence, (Asp)4-Lys. Due to its exceptional substrate specificity, enterokinase is widely used as a versatile molecular tool in various bioprocessing, especially in removing fusion tags from recombinant proteins. Despite its biotechnological importance, mass production of soluble enterokinase in bacteria still remains an unsolved challenge. Here, we present an effective production strategy of human enterokinase using tandemly linked solubility enhancers consisting of thioredoxin, phosphoglycerate kinase or maltose-binding protein. The resulting enterokinases exhibited significantly enhanced solubility and bacterial expression level while retaining enzymatic activity, which demonstrates that combinatorial design of fusion proteins has the potential to provide an efficient way to produce recombinant proteins in bacteria.


Subject(s)
Enteropeptidase , Escherichia coli , Amino Acid Sequence , Enteropeptidase/genetics , Enteropeptidase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Recombinant Fusion Proteins/genetics , Recombinant Proteins/genetics , Solubility
3.
iScience ; 24(2): 102104, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33615202

ABSTRACT

Systematic control of in vivo behavior of protein-based therapeutics is considered highly desirable for improving their clinical outcomes. Modulation of biochemical properties including molecular weight, surface charge, and binding affinity has thus been suggested to enhance their therapeutic effects. However, establishing a relationship between the binding affinity and tumor localization remains a debated issue. Here we investigate the influence of the binding affinity of proteins on tumor localization by using four repebodies having different affinities to EGFR. Biochemical analysis and molecular imaging provided direct evidence that optimal affinity with balanced target binding and dissociation can facilitate deep penetration and accumulation of protein binders in tumors by overcoming the binding-site-barrier effect. Our findings suggest that binding kinetics-based protein design can be implicated in the development of fine-tuned protein therapeutics for cancers.

4.
ACS Nano ; 15(1): 338-350, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33231435

ABSTRACT

Three-dimensional (3D) visualization of tumor vasculature is a key factor in accurate evaluation of RNA interference (RNAi)-based antiangiogenic nanomedicine, a promising approach for cancer therapeutics. However, this remains challenging because there is not a physiologically relevant in vitro model or precise analytic methodology. To address this limitation, a strategy based on 3D microfluidic angiogenesis-on-a-chip and 3D tumor vascular mapping was developed for evaluating RNAi-based antiangiogenic nanomedicine. We developed a microfluidic model to recapitulate functional 3D angiogenic sprouting when co-cultured with various cancer cell types. This model enabled efficient and rapid assessment of antiangiogenic nanomedicine in treatment of hyper-angiogenic cancer. In addition, tissue-clearing-based whole vascular mapping of tumor xenograft allowed extraction of complex 3D morphological information in diverse quantitative parameters. Using this 3D imaging-based analysis, we observed tumor sub-regional differences in the antiangiogenic effect. Our systematic strategy can help in narrowing down the promising targets of antiangiogenic nanomedicine and then enables deep analysis of complex morphological changes in tumor vasculature, providing a powerful platform for the development of safe and effective nanomedicine for cancer therapeutics.


Subject(s)
Nanomedicine , Neoplasms , Humans , Microfluidics , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neovascularization, Pathologic/diagnostic imaging , Neovascularization, Pathologic/drug therapy , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL
...