Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 171: 115343, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31918389

ABSTRACT

River water quality is one of the main challenges that societies face during the 21st century. Accurate and reliable real-time prediction of water quality is an effective adaptation measure to counteract water quality issues such as accidental spill and harmful algae blooms. To improve accuracy and skill of water quality forecasts along the Yeongsan River in South Korea three different ensemble data assimilation (DA) methods have been investigated: the traditional Ensemble Kalman Filter (EnKF) and two related algorithms (Dud-EnKF and EnKF-GS) that offer either possibilities to improve initial conditions for non-linear models or reduce computation time (important for real-time forecasting) by using a (smaller) time-lagged ensemble to estimate the Kalman gain. Twin experiments, assimilating synthetic observations of three algae species and phosphate concentrations, with relatively small ensemble sizes showed that all three DA methods improved forecast accuracy and skill with only subtle difference between the methods. They all improved the model accuracy at downstream locations with very similar performances but due to spurious correlation, the accuracy at upstream locations was somewhat deteriorated. The experiments also showed no clear trend of improvement by increasing the ensemble size from 8 to 64. The real world experiments, assimilating real observations of three algae species and phosphate concentrations, showed that less improvement was achieved compared to the twin experiments. Further improvement of the model accuracy may be achieved with different state variable definitions, use of different perturbation and error modelling settings and/or better calibration of the deterministic water quality model.


Subject(s)
Models, Theoretical , Water Quality , Forecasting , Republic of Korea , Rivers
2.
Environ Pollut ; 241: 576-585, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29885628

ABSTRACT

The characteristics of an estuary are determined by various factors as like as tide, wave, river discharge, etc. which also control the water quality of the estuary. Therefore, detecting the changes of characteristics is critical in managing the environmental qualities and pollution and so the locations of monitoring should be selected carefully. The present study proposes a framework to deploy the monitoring systems based on a graphical method of the spatial and temporal optimizations. With the well-validated numerical simulation results, the monitoring locations are determined to capture the changes of water qualities and pollutants depending on the variations of tide, current and freshwater discharge. The deployment strategy to find the appropriate monitoring locations is designed with the constrained optimization method, which finds solutions by constraining the objective function into the feasible regions. The objective and constrained functions are constructed with the interpolation technique such as objective analysis. Even with the smaller number of the monitoring locations, the present method performs well equivalently to the arbitrarily and evenly deployed monitoring system.


Subject(s)
Environmental Monitoring/methods , Estuaries , Water Pollutants, Chemical/analysis , China , Fresh Water , Rivers , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...