Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Parkinsons Dis ; 2022: 4382145, 2022.
Article in English | MEDLINE | ID: mdl-36407681

ABSTRACT

The hemiparkinsonian nonhuman primate model induced by unilateral injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into the carotid artery is used to study Parkinson's disease. However, there have been no studies that the contralateral distribution of MPTP via the cerebral collateral circulation is provided by both the circle of Willis (CoW) and connections of the carotid artery. To investigate whether MPTP-induced unilaterally damaged regions were determined by asymmetrical cerebral blood flow, the differential asymmetric damage of striatal subregions, and examined structural asymmetries in a circle of Willis, and blood flow velocity of the common carotid artery were observed in three monkeys that were infused with MPTP through the left internal carotid artery. Lower flow velocity in the ipsilateral common carotid artery and a higher ratio of ipsilateral middle cerebral artery diameter to anterior cerebral artery diameter resulted in unilateral damage. Additionally, the unilateral damaged monkey observed the apomorphine-induced contralateral rotation behavior and the temporary increase of plasma RANTES. Contrastively, higher flow velocity in the ipsilateral common carotid artery was observed in the bilateral damaged monkey. It is suggested that asymmetry of blood flow velocity and structural asymmetry of the circle of Willis should be taken into consideration when establishing more efficient hemiparkinsonian nonhuman primate models.

2.
Hippocampus ; 32(11-12): 839-856, 2022 11.
Article in English | MEDLINE | ID: mdl-36314648

ABSTRACT

Memory is vital to our daily existence. Although a large number of studies have suggested that the hippocampus is dedicated to long-term memory, understanding how memory is anatomically encoded within the hippocampal neuronal network is still lacking. Previously our laboratory showed that hippocampal pyramidal cells are organized in cell clusters to encode both spatial and episodic memory. Based on these findings, we hypothesized that "cluster-type" is a functional organization principal in the hippocampus to encode all types of memory. Here, we tested whether contextual fear, another hippocampus-dependent memory, is also organized in cell clusters. We further investigated the possibility that post-learning sleep may affect functional organization. Cluster formation was examined by assessing the topographic localization of active cells using immediate early gene (IEG, Zif268) imaging methods. The first experiment provides evidence of a cluster-type organization in the hippocampus for fear memory by showing a spatial distribution of adjacent Zif268 positive cells. Exposure to the context itself, without electric shocks, induced a similar cellular formation; however, the degree of clustering was significantly lower. The second experiment provides evidence that sleep plays a role in the refinement and long-term stability of the clusters. The present results confirm the existence of a cluster-type topographic functional neuronal organization in the hippocampus for memory, and further suggest that post-learning sleep enhances the cluster-type organization.


Subject(s)
Early Growth Response Protein 1 , Hippocampus , Early Growth Response Protein 1/metabolism , Hippocampus/physiology , Fear/physiology , Genes, Immediate-Early , Sleep
3.
Exp Neurobiol ; 31(6): 409-418, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36631849

ABSTRACT

Till date, researchers have been developing animal models of Alzheimer's disease (AD) in various species to understand the pathological characterization and molecular mechanistic pathways associated with this condition in humans to identify potential therapeutic treatments. A widely recognized AD model that mimics the pathology of human AD involves the intracerebroventricular (ICV) injection with streptozotocin (STZ). However, ICV injection as an invasive approach has several limitations related to complicated surgical procedures. Therefore, in the present study, we created a customized stereotaxic frame using the XperCT-guided system for injecting STZ in cynomolgus monkeys, aiming to establish an AD model. The anatomical structures surrounding the cisterna magna (CM) were confirmed using CT/MRI fusion images of monkey brain with XperCT, the c-arm cone beam computed tomography. XperCT was used to determine the appropriate direction in which the needle tip should be inserted within the CM region. Cerebrospinal fluid (CSF) was collected to confirm the accurate target site when STZ was injected into the CM. Cynomolgus monkeys were administered STZ dissolved in artificial CSF once every week for 4 weeks via intracisterna magna (ICM) injection using XperCT-guided stereotactic system. The molecular mechanisms underlying the progression of STZ-induced AD pathology were analyzed two weeks after the final injection. The monkeys subjected to XperCT-based STZ injection via the ICM route showed features of AD pathology, including markedly enhanced neuronal loss, synaptic impairment, and tau phosphorylation in the hippocampus. These findings suggest a new approach for the construction of neurodegenerative disease models and development of therapeutic strategies.

4.
Learn Mem ; 25(5): 241-246, 2018 05.
Article in English | MEDLINE | ID: mdl-29661836

ABSTRACT

It is well established that protein kinase A (PKA) is involved in hippocampal dependent memory consolidation. Sleep is also known to play an important role in this process. However, whether sleep-dependent memory consolidation involves PKA activation has not been clearly determined. Using behavioral observation, animals were categorized into sleep and awake groups. We show that intrahippocampal injections of the PKA inhibitor Rp-cAMPs in post-contextual fear conditioning sleep produced a suppression of long-term fear memory, while injections of Rp-cAMPs during an awake state, at a similar time point, had no effect. In contrast, injections of the PKA activator Sp-cAMPs in awake state, rescued sleep deprivation-induced memory impairments. These results suggest that following learning, PKA activation specifically in sleep is required for the consolidation of long-term memory.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/physiology , Fear , Hippocampus/physiology , Memory Consolidation/physiology , Sleep , Animals , Behavior, Animal/drug effects , Conditioning, Classical , Cyclic AMP/administration & dosage , Cyclic AMP/analogs & derivatives , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Hippocampus/drug effects , Memory Consolidation/drug effects , Protein Kinase Inhibitors/administration & dosage , Rats, Long-Evans , Thionucleotides/administration & dosage
5.
Korean J Fam Med ; 37(3): 177-81, 2016 May.
Article in English | MEDLINE | ID: mdl-27274389

ABSTRACT

BACKGROUND: The Korean-Mini-Mental Status Examination (K-MMSE) is a dementia-screening test that can be easily applied in both community and clinical settings. However, in 20% to 30% of cases, the K-MMSE produces a false negative response. This suggests that it is necessary to evaluate the accuracy of K-MMSE as a screening test for dementia, which can be achieved through comparison of K-MMSE and Seoul Neuropsychological Screening Battery (SNSB)-II results. METHODS: The study included 713 subjects (male 534, female 179; mean age, 69.3±6.9 years). All subjects were assessed using K-MMSE and SNSB-II tests, the results of which were divided into normal and abnormal in 15 percentile standards. RESULTS: The sensitivity of the K-MMSE was 48.7%, with a specificity of 89.9%. The incidence of false positive and negative results totaled 10.1% and 51.2%, respectively. In addition, the positive predictive value of the K-MMSE was 87.1%, while the negative predictive value was 55.6%. The false-negative group showed cognitive impairments in regions of memory and executive function. Subsequently, in the false-positive group, subjects demonstrated reduced performance in memory recall, time orientation, attention, and calculation of K-MMSE items. CONCLUSION: The results obtained in the study suggest that cognitive function might still be impaired even if an individual obtained a normal score on the K-MMSE. If the K-MMSE is combined with tests of memory or executive function, the accuracy of dementia diagnosis could be greatly improved.

SELECTION OF CITATIONS
SEARCH DETAIL
...