Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(36): 19982-19988, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37655897

ABSTRACT

Aqueous dispersions of microporous nanocrystals with dry, gas-accessible pores─referred to as "microporous water"─enable high densities of gas molecules to be transported through water. For many applications of microporous water, generalizable strategies are required to functionalize the external surface of microporous particles to control their dispersibility, stability, and interactions with other solution-phase components─including catalysts, proteins, and cells─while retaining as much of their internal pore volume as possible. Here, we establish design principles for the noncovalent surface functionalization of hydrophobic metal-organic frameworks with amphiphilic polymers that render the particles dispersible in water and enhance their hydrolytic stability. Specifically, we show that block co-polymers with persistence lengths that exceed the micropore aperture size of zeolitic imidazolate frameworks (ZIFs) can dramatically enhance ZIF particle dispersibility and stability while preserving porosity and >80% of the theoretical O2 carrying capacity. Moreover, enhancements in hydrolytic stability are greatest when the polymer can form strong bonds to exposed metal sites on the external particle surface. More broadly, our insights provide guidelines for controlling the interface between polymers and metal-organic framework particles in aqueous environments to augment the properties of microporous water.

2.
Nature ; 608(7924): 712-718, 2022 08.
Article in English | MEDLINE | ID: mdl-36002487

ABSTRACT

Liquids with permanent microporosity can absorb larger quantities of gas molecules than conventional solvents1, providing new opportunities for liquid-phase gas storage, transport and reactivity. Current approaches to designing porous liquids rely on sterically bulky solvent molecules or surface ligands and, thus, are not amenable to many important solvents, including water2-4. Here we report a generalizable thermodynamic strategy to preserve permanent microporosity and impart high gas solubilities to liquid water. Specifically, we show how the external and internal surface chemistry of microporous zeolite and metal-organic framework (MOF) nanocrystals can be tailored to promote the formation of stable dispersions in water while maintaining dry networks of micropores that are accessible to gas molecules. As a result of their permanent microporosity, these aqueous fluids can concentrate gases, including oxygen (O2) and carbon dioxide (CO2), to much higher densities than are found in typical aqueous environments. When these fluids are oxygenated, record-high capacities of O2 can be delivered to hypoxic red blood cells, highlighting one potential application of this new class of microporous liquids for physiological gas transport.

3.
Adv Mater ; 31(48): e1900136, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31550404

ABSTRACT

Scanning probe lithography is used to directly pattern monolayer transition metal dichalcogenides (TMDs) without the use of a sacrificial resist. Using an atomic-force microscope, a negatively biased tip is brought close to the TMD surface. By inducing a water bridge between the tip and the TMD surface, controllable oxidation is achieved at the sub-100 nm resolution. The oxidized flake is then submerged into water for selective oxide removal which leads to controllable patterning. In addition, by changing the oxidation time, thickness tunable patterning of multilayer TMDs is demonstrated. This resist-less process results in exposed edges, overcoming a barrier in traditional resist-based lithography and dry etch where polymeric byproduct layers are often formed at the edges. By patterning monolayers into geometric patterns of different dimensions and measuring the effective carrier lifetime, the non-radiative recombination velocity due to edge defects is extracted. Using this patterning technique, it is shown that selenide TMDs exhibit lower edge recombination velocity as compared to sulfide TMDs. The utility of scanning probe lithography towards understanding material-dependent edge recombination losses without significantly normalizing edge behaviors due to heavy defect generation, while allowing for eventual exploration of edge passivation schemes is highlighted, which is of profound interest for nanoscale electronics and optoelectronics.

4.
Sci Adv ; 5(1): eaau4728, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30613771

ABSTRACT

In recent years, there have been tremendous advancements in the growth of monolayer transition metal dichalcogenides (TMDCs) by chemical vapor deposition (CVD). However, obtaining high photoluminescence quantum yield (PL QY), which is the key figure of merit for optoelectronics, is still challenging in the grown monolayers. Specifically, the as-grown monolayers often exhibit lower PL QY than their mechanically exfoliated counterparts. In this work, we demonstrate synthetic tungsten diselenide (WSe2) monolayers with PL QY exceeding that of exfoliated crystals by over an order of magnitude. PL QY of ~60% is obtained in monolayer films grown by CVD, which is the highest reported value to date for WSe2 prepared by any technique. The high optoelectronic quality is enabled by the combination of optimizing growth conditions via tuning the halide promoter ratio, and introducing a simple substrate decoupling method via solvent evaporation, which also mechanically relaxes the grown films. The achievement of scalable WSe2 with high PL QY could potentially enable the emergence of technologically relevant devices at the atomically thin limit.

SELECTION OF CITATIONS
SEARCH DETAIL
...