Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Anim Resour ; 44(1): 189-203, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38229858

ABSTRACT

This study investigated the antioxidant activity of radish seed oil (RSO) and its effects on the quality and storage characteristics of pork patties. To assess the antioxidant capacity of RSO, this study analyzed fatty acid composition, peroxide value (PV), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Pork patties were manufactured with the addition of RSO-0.4%, 0.8%, 1.6%, and 2.4%-and measured in terms of proximate composition, pH, water holding capacity (WHC), cooking loss (CL), color, texture profile analysis, and a sensory evaluation. Total microbial count (TMC), volatile basic nitrogen (VBN), thiobarbituric acid reactive substances (TBARS), and PV were measured at 1, 3, and 7 days of refrigerated storage. The DPPH radical scavenging activity of RSO was found to be 75.46%. In the cases of WHC and CL, there was no significant differences observed between RSO0.4%, RSO0.8%, and positive control (PC; p>0.05). Meanwhile, RSO2.4% showed significantly lower hardness, springiness, gumminess, and chewiness than PC (p<0.05), and these values tended to decrease with the addition of increasing RSO. In terms of storage characteristics, with an increase in the amount of RSO added, TMC, VBN, TBARS, and PV all decreased; among the treatment groups, RSO2.4% showed the lowest values. In conclusion, RSO exhibits antioxidant activity, but when added in large amounts, it negatively affects the quality characteristics of patties while positively impacting their storage properties, thus necessitating a balanced consideration of both outcomes. Therefore, adding 1.6% RSO is considered to be the most appropriate level for formulations to be used in practice.

2.
Sci Rep ; 13(1): 18518, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898728

ABSTRACT

Cryopreservation is an important technique used in the conservation of various plant tissues. This study proposes a cryopreservation method for the long-term conservation of eastern bracken fern gametophytes (Pteridium aquilinum var. latiusculum). Encapsulation-dehydration of the gametophytes was performed, and the exogenous sucrose and abscisic acid (ABA) preculture conditions were investigated. Gametophytes are sensitive to dehydration and drying, and the following treatment conditions were applied: encapsulation by alginate containing 0.75 M sucrose, 18-h loading treatment with 0.75 M sucrose, and 6-h drying treatment. The survival rate following cryopreservation was determined. The water content of < 27.5% in the alginate beads after dehydration and drying was found to be appropriate for ensuring survival. Additionally, performing an exogenous sucrose and ABA preculture was essential before encapsulation to achieve a survival of ≥ 90%. The high stress induced by cryopreservation and exogenous preculture regulated the expression of PaSuSy, PaLEA14, and PaABI1b and the endogenous ABA content. In eastern bracken gametophytes, ABI1 appears to be a negative regulator of ABA signaling. These results indicate that the encapsulation-dehydration method is effective for the long-term conservation of eastern bracken fern gametophytes, and exogenous preculture alleviates abiotic stress and increases the survival rate.


Subject(s)
Abscisic Acid , Pteridium , Abscisic Acid/pharmacology , Dehydration , Sucrose/pharmacology , Germ Cells, Plant , Cryopreservation/methods , Alginates
3.
Plants (Basel) ; 12(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37631186

ABSTRACT

Recently, there has been a growing interest in the consumption of plant-based foods such as vegetables and grains for the purpose of disease prevention and treatment. Adlay seeds contain physiologically active substances, including coixol, coixenolide, and lactams. In this study, adlay sprouts were cultivated and harvested at various time points, specifically at 3, 5, 7, 9, and 11 days after sowing. The antioxidant activity of the extracts was evaluated using assays such as DPPH radical scavenging, ABTS radical scavenging, reducing power, and total polyphenol contents. The toxicity of the extracts was assessed using cell culture and the WST-1 assay. The aboveground components of the sprouts demonstrated a significant increase in length, ranging from 2.75 cm to 21.87 cm, weight, ranging from 0.05 g to 0.32 g, and biomass, ranging from 161.4 g to 1319.1 g, as the number of days after sowing advanced, reaching its peak coixol content of 39.38 mg/g on the third day after sowing. Notably, the antioxidant enzyme activity was highest between the third and fifth days after sowing. Regarding anti-inflammatory activity, the inhibition of cyclooxygenase 2 (COX-2) expression was most prominent in samples harvested from the ninth to eleventh days after sowing, corresponding to the later stage of growth. While the overall production mass increased with the number of days after sowing, considering factors such as yield increase index per unit area, turnover rate, and antioxidant activity, harvesting at the early growth stage, specifically between the fifth and seventh days after sowing, was found to be economically advantageous. Thus, the quality, antioxidant capacity, and anti-inflammatory activity of adlay sprouts varied depending on the harvest time, highlighting the importance of determining the appropriate harvest time based on the production objectives. This study demonstrates the changes in the growth and quality of adlay sprouts in relation to the harvest time, emphasizing the potential for developing a market for adlay sprouts as a new food product.

4.
Front Plant Sci ; 13: 1043897, 2022.
Article in English | MEDLINE | ID: mdl-36388572

ABSTRACT

Accelerated global warming is leading to the loss of plant species diversity, and ex situ preservation of seeds is becoming an increasingly important aspect of species conservation. However, information on dormancy and germination is lacking in many endangered species. Amsonia elliptica (Apocynaceae) is the only Amsonia species native to Korea, and the South Korean Ministry of Environment has designated it Class II endangered wildlife. Nevertheless, the dormancy class and the dormancy breaking method for seeds of this species for germination are not precisely known. We identified the structure of A. elliptica seeds and the causes of dormancy, which inhibits germination. In addition, we tried to develop an effective germination promotion method by testing the wet stratified condition, which breaks dormancy, and the form of gibberellin that can replace it. Fresh seeds of A. elliptica imbibe water, but the covering layers (endosperm and seed coat) inhibit germination by mechanically restricting the embryo. Initial germination tests confirmed low embryo growth potential and physiological dormancy (PD). Restriction due to the covering layer was eliminated by seed scarification, and abnormal germination was observed. After 12 weeks of cold moist stratification at 4°C, only 12% of seeds germinated. However, 68.8% of seeds subjected to 8 weeks of warm moist stratification followed by 12 weeks of cold stratification germinated, indicating that warm stratification pretreatment before cold stratification is effective in breaking dormancy. A. elliptica seeds exhibited intermediate PD. Furthermore, 61.3% of seeds soaked in 500 mg/L GA4+7 for 14 days and incubated at 25/15°C germinated. Therefore, GA4+7 rapidly broke the dormancy of A. elliptica seeds compared with warm plus cold stratification treatment, thus providing an efficient method for seedling production.

5.
Article in English | MEDLINE | ID: mdl-34574725

ABSTRACT

The formation and pollution of particulate matter (PM), a side effect of rapid industrialization and urbanization, is considered a global issue. However, various plant species are able to effectively capture and reduce atmospheric PM concentrations. We investigated the indoor growth and morphology of 21 indigenous Korean evergreen species at low light intensities to ascertain their ability to reduce PM of aerosol particles in a closed acrylic chamber. The decrease in PM mass concentration differed significantly across species, with a significant correlation (8 h; p < 0.001). The reduction in the mass concentration of PM differed with particle size and across species. The highest reduction of PM2.5 occurred after 8 h with Dryopteris lacera (86.8%), Ilex × wandoensis (84.9%), Machilus thunbergii (84.3%), and Rhododendron brachycarpum (84.0%). Reduction of PM10 after 8 h was highest with Cephalotaxus harringtonii (98.3%), I. × wandoensis (98.5%), M. thunbergii (98.5%), and R. brachycarpum (98.3%). Plant morphological characteristics (category, plant height, leaf shape, leaf area) and relative humidity were closely related to the decrease in PM mass concentration. In conclusion, our findings can be used to identify Korean plant species that can reduce PM concentration and are suitable for indoor use.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Particle Size , Particulate Matter/analysis , Republic of Korea
6.
Plant Methods ; 17(1): 87, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34344395

ABSTRACT

BACKGROUND: Liquid suspension culture efficiently proliferates plant cells and can be applied to ferns because it rapidly increases the fresh weight of gametophytes. This study assessed gametophyte proliferation and sporophyte production of Pteridium aquilinum var. latiusculum using a suspension culture method. RESULTS: The growth curve linear phase of gametophyte cells was confirmed between 9 and 18 days of culture, and the subculture cycle was determined to be 2 weeks. A double-strength MS medium (fresh weight, 18.0 g) containing 2% sucrose and NH4+:NO3- (120 mM, 40:80) was found to be the optimal liquid medium. Gametophytes obtained after suspension culture for 18 days did not normally form sporophytes in an ex vitro soil environment. However, this issue was resolved after changing the culture type or extending the culture period to 6 weeks. A short suspension culture period increased the fresh weight of fragmented and homogenized gametophytes but yielded numerous relatively immature gametophytes (globular forms of branching gametophytes, BG). Furthermore, differences in gametophyte morphogenesis and development were indicated by changes in endogenous phytohormone content. BG with immature development exhibited high accumulation of zeatin, jasmonic acid, and salicylic acid, and relatively low levels of abscisic acid and indole-3-acetic acid. The immature development of gametophytes directly affected sporophyte formation. CONCLUSIONS: This study maximized the advantages of liquid suspension culture using eastern bracken gametophytes and provides data to resolve any associated issues, thus facilitating efficient bracken production.

7.
Plants (Basel) ; 9(9)2020 Aug 22.
Article in English | MEDLINE | ID: mdl-32842585

ABSTRACT

Bracken fern (Pteridium aquilinum var. latiusculum (Desv.) Underw. ex A. Heller) has long been grown industrially in South Korea. Conventional propagation methods, including planting rhizomes and in vitro seedling culture, are labor intensive and expensive, and thus not commercially suitable. We aimed to develop a system to produce synthetic seeds using fern spores (SFS). Synthetic seeds were prepared by mixing bracken spores and alginate matrix. Spore germination and gametophyte and sporophyte growth and development from SFS proceeded normally. Spore density affected gametophyte and sporophyte numbers. SFS prepared using cold (4 °C) long-term storage spores (even 7-year-old spores) could effectively form sporophytes. The highest germination was observed at 25 °C. Soaking-treated SFS successfully formed sporophytes, even after 30 days of storage at 4 °C; indeed, sporophytes formed even after five days of storage at 25 °C during transport conditions. SFS were sown in plug trays for commercial use. Young sporophytes grown from plug seedlings were greenhouse cultivated, and transplanting within eight weeks was effective for root growth and growing-point formation. Developing synthetic seeds is a feasible solution for facilitating efficient transport and the handling of small-sized fern spores; furthermore, this SFS technology provides the basis for fern seedling culture and fern spore industrialization.

8.
Plants (Basel) ; 9(2)2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32059405

ABSTRACT

Selaginella martensii, an evergreen perennial fern that is native to South America and New Zealand, is named "frosty fern" because of its beautiful white-colored leaves and it is used as an ornamental plant. Efficient propagation methods for this species have not been developed. We aimed to develop an efficient propagation method for S. martensii through in vitro culture. We investigated culture conditions that are suitable for shoot-tip proliferation and growth. The optimum shoot-tip culture conditions were determined while using Murashige and Skoog (MS) medium (quarter, half, full, or double strength) and macronutrients (sucrose and two nitrogen sources) at various concentrations. In MS medium, the shoot tips formed a maximum of 6.77 nodes per explant, and each node formed two new shoot tips (i.e., 26 or 64 shoot tips). When using branching segments containing an angle meristem, the shoot-to-rhizophore formation ratio could be controlled by medium supplementation with plant-growth regulators. Sporophytes that were grown from shoot tips in vitro were acclimated in ex vitro soil conditions and successfully survived in the greenhouse. Numerous shoot tips could be obtained from in vitro-grown sporophytes and be proliferated ex vitro to produce a large number of plants. This method provides a way of shortening the time that is required for producing a large stock of S. martensii planting material.

SELECTION OF CITATIONS
SEARCH DETAIL
...