Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 8852, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31221970

ABSTRACT

Petunia × hybrida cv 'Mitchell Diploid' floral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis ultimately produces floral volatiles derived sequentially from phenylalanine, cinnamic acid, and p-coumaric acid. In an attempt to better understand biochemical steps after p-coumaric acid production, we cloned and characterized three petunia transcripts with high similarity to p-coumarate 3-hydroxylase (C3H), hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT), and caffeoyl shikimate esterase (CSE). Transcript accumulation of PhC3H and PhHCT was highest in flower limb tissue during open flower stages. PhCSE transcript accumulation was also highest in flower limb tissue, but it was detected earlier at initial flower opening with a bell-shaped distribution pattern. Down regulation of endogenous PhC3H transcript resulted in altered transcript accumulation of many other FVBP network transcripts, a reduction in floral volatiles, and the emission of a novel floral volatile. Down regulation of PhHCT transcript did not have as large of an effect on floral volatiles as was observed for PhC3H down regulation, but eugenol and isoeugenol emissions were significantly reduced on the downstream floral volatiles. Together these results indicate that PhC3H is involved in FVBP biosynthesis and the reduction of PhC3H transcript influences FVBP metabolism at the network level. Additional research is required to illustrate PhHCT and PhCSE functions of petunia.


Subject(s)
Flowers/metabolism , Mixed Function Oxygenases/metabolism , Petunia/enzymology , Volatile Organic Compounds/metabolism , Acyltransferases , Carboxylic Ester Hydrolases , Coumaric Acids , Down-Regulation , Propionates/chemistry , Volatilization
2.
Plant Physiol ; 179(3): 958-968, 2019 03.
Article in English | MEDLINE | ID: mdl-30337452

ABSTRACT

Plants synthesize the thiazole precursor of thiamin (cThz-P) via THIAMIN4 (THI4), a suicide enzyme that mediates one reaction cycle and must then be degraded and resynthesized. It has been estimated that this THI4 turnover consumes 2% to 12% of the maintenance energy budget and that installing an energy-efficient alternative pathway could substantially increase crop yield potential. Available data point to two natural alternatives to the suicidal THI4 pathway: (i) nonsuicidal prokaryotic THI4s that lack the active-site Cys residue on which suicide activity depends, and (ii) an uncharacterized thiazole synthesis pathway in flowers of the tropical arum lily Caladium bicolor that enables production and emission of large amounts of the cThz-P analog 4-methyl-5-vinylthiazole (MVT). We used functional complementation of an Escherichia coli ΔthiG strain to identify a nonsuicidal bacterial THI4 (from Thermovibrio ammonificans) that can function in conditions like those in plant cells. We explored whether C. bicolor synthesizes MVT de novo via a novel route, via a suicidal or a nonsuicidal THI4, or by catabolizing thiamin. Analysis of developmental changes in MVT emission, extractable MVT, thiamin level, and THI4 expression indicated that C. bicolor flowers make MVT de novo via a massively expressed THI4 and that thiamin is not involved. Functional complementation tests indicated that C. bicolor THI4, which has the active-site Cys needed to operate suicidally, may be capable of suicidal and - in hypoxic conditions - nonsuicidal operation. T. ammonificans and C. bicolor THI4s are thus candidate parts for rational redesign or directed evolution of efficient, nonsuicidal THI4s for use in crop improvement.


Subject(s)
Thiamine/biosynthesis , Thiazoles/metabolism , Araceae/enzymology , Bacteria/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Biosynthetic Pathways , Escherichia coli/genetics , Metabolic Engineering/methods , Methanococcus/enzymology , Plants/metabolism
3.
Phytochemistry ; 122: 103-112, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26654856

ABSTRACT

Hybrid Lilium (common name lily) cultivars are among the top produced domestic fresh cut flowers and potted plants in the US today. Many hybrid Lilium cultivars produce large and showy flowers that emit copious amounts of volatile molecules, which can negatively affect a consumer's appreciation or limit use of the plant product. There are few publications focused on the biochemistry, genetics, and/or molecular regulation of floral volatile biosynthesis for Lilium cultivars. In an initial pursuit to provide breeders with molecular markers for floral volatile biosynthesis, a total of five commercially available oriental and oriental-trumpet hybrid Lilium cultivars were selected for analytical characterization of floral volatile emission. In total, 66 volatile molecules were qualified and quantitated among all cultivars. Chemical classes of identified volatiles include monoterpene hydrocarbons, monoterpene alcohols and aldehydes, phenylpropanoids, benzenoids, fatty-acid-derived, nitrogen-containing, and amino-acid-derived compounds. In general, the floral volatile profiles of the three oriental-trumpet hybrids were dominated by monoterpene hydrocarbons, monoterpene alcohols and aldehydes, while the two oriental hybrids were dominated by monoterpene alcohols and aldehydes and phenylpropanoids, respectively. Tepal tissues (two petal whirls) emitted the vast majority of total volatile molecules compared to the reproductive organs of the flowers. Tepal volatile profiles were cultivar specific with a high degree of distinction, which indicates the five cultivars chosen will provide an excellent differential genetic environment for gene discovery through comparative transcriptomics in the future. Cloning and assaying transcript accumulation from four floral volatile biosynthetic candidates provided few immediate or obvious trends with floral volatile emission.


Subject(s)
Lilium/chemistry , Flowers/genetics , Gene Expression Regulation, Plant , Lilium/genetics , Odorants
SELECTION OF CITATIONS
SEARCH DETAIL
...