Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 17(9): e0274766, 2022.
Article in English | MEDLINE | ID: mdl-36155980

ABSTRACT

Pest control by biological means is an effective, eco-friendly, and promising method that typically involves compounds naturally derived from actinomycetes. Thus, the present study aimed to screen, characterize, and identify the structure of insecticidal compounds from Streptomyces sp. KR0006 and increase the activity through mutagenesis. In the examination of the insecticidal activity level of the isolates, Streptomyces sp. KR0006 metabolite showed significant activity against larvae and moths of Plutella xylostella. Taxonomic analyses of the 16S rRNA gene sequences revealed that the isolated KR0006 strain tended to be 99% consistent with Streptomyces cinereoruber strain NBRC 12756. Three active compounds isolated from the culture filtrate of KR0006 were purified by solvent partition, mid-pressure liquid chromatography (MPLC), Sephadex LH20 column chromatography, and high-performance liquid chromatography (HPLC). By performing 1H-NMR, 13C-NMR, and 2D-NMR experiments, and high-resolution electrospray ionization mass spectrometry analysis, the 316-HP2, 316-HP3, and 316-HP5 compounds were inferred as antimycin A3a (MW, 519.; C26H36N2O9), antimycin A8a (MW, 534; C27H38N2O9), and antimycin A1a (MW, 548; C28H40N2O9) respectively. Mutant U67 obtained from exposure to ultraviolet (UV) irradiation (254 nm, height 17 cm) for 70 seconds resulted in a 70% more larval mortality than that of the initial wild culture. The second mutation of the culture broth enhanced insecticidal activity by 80 and 100% compared with the first mutation and initial medium, respectively. Our study found that Streptomyces sp. KR0006 strain produces insecticidal active compounds and could be used for practical pest management.


Subject(s)
Insecticides , Moths , Streptomyces , Animals , Antimycin A/analogs & derivatives , Insecticides/chemistry , Larva , Moths/genetics , Mutagenesis , RNA, Ribosomal, 16S/genetics , Solvents/metabolism , Streptomyces/metabolism
2.
Pestic Biochem Physiol ; 187: 105213, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36127057

ABSTRACT

The KRA18-249 strain, isolated from a natural recreational forest near Jeongseon, Gangwon-do, when applied to plants induced signs of wilting within 24 h, leading to plant death. The isolated actinomycete was identified as Streptomyces gardneri based on 16S rRNA gene homogeneity analysis. The culture filtrate was solvent fractionated to obtain the active substance, and the active compound 249-Y1 was isolated from the purified fractions via a herbicide activity test using Digitaria ciliaris. NMR and ESI-MS analyses revealed that the molecular formula of 249-Y1 is C20H16O6 [MW = 352.0947] and is an anthraquinone (rubiginone D2) produce by polyketide synthetase system. The active compound 249-Y1 showed strong (100%) herbicidal activity against several weeds at 500 µg mL-1 concentration. Twisting symptoms began to appear within 24 h of treatment and intensified over time. The KRA18-249 strain produced the herbicidal compound under specific culture conditions, that is, at 200 rpm, 35 °C, for eight days at an initial pH of 10. We also found that 249-Y1 inhibited chlorophyll, but was not a radical generator. Overall, the secondary metabolite 249-Y1, produced by KRA18-249, can be used as a new biological agent for weed control.


Subject(s)
Herbicides , Polyketides , Streptomyces , Anthraquinones/pharmacology , Biological Factors/metabolism , Chlorophyll/metabolism , Herbicides/chemistry , Ligases/metabolism , Plant Weeds/metabolism , Polyketides/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Solvents , Streptomyces/chemistry
3.
J Cell Mol Med ; 25(9): 4287-4297, 2021 05.
Article in English | MEDLINE | ID: mdl-33768674

ABSTRACT

Osteoclasts (OCs) play important roles in bone remodelling and contribute to bone loss by increasing bone resorption activity. Excessively activated OCs cause diverse bone disorders including osteoporosis. Isovaleric acid (IVA), also known as 3-methylbutanoic acid is a 5-carbon branched-chain fatty acid (BCFA), which can be generated by bacterial fermentation of a leucine-rich diet. Here, we find that IVA suppresses differentiation of bone marrow-derived macrophages into OCs by RANKL. IVA inhibited the expression of OC-related genes. IVA-induced inhibitory effects on OC generation were attenuated by pertussis toxin but not by H89, suggesting a Gi -coupled receptor-dependent but protein kinase A-independent response. Moreover, IVA stimulates AMPK phosphorylation, and treatment with an AMPK inhibitor blocks IVA-induced inhibition of OC generation. In an ovariectomized mouse model, addition of IVA to the drinking water resulted in significant decrease of body weight gain and inhibited the expression of not only OC-related genes but also fusogenic genes in the bone tissue. IVA exposure also blocked bone destruction and OC generation in the bone tissue of ovariectomized mice. Collectively, the results demonstrate that IVA is a novel bioactive BCFA that inhibits OC differentiation, suggesting that IVA can be considered a useful material to control osteoclast-associated bone disorders, including osteoporosis.


Subject(s)
Bone Resorption/prevention & control , Cell Differentiation , Hemiterpenes/pharmacology , Osteoclasts/cytology , Osteoporosis/prevention & control , Ovariectomy/adverse effects , Pentanoic Acids/pharmacology , Animals , Bone Remodeling , Bone Resorption/etiology , Bone Resorption/pathology , Female , Macrophages/cytology , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Osteoclasts/drug effects , Osteoporosis/pathology , Osteoporosis/surgery , Signal Transduction
5.
J Cell Mol Med ; 25(1): 473-483, 2021 01.
Article in English | MEDLINE | ID: mdl-33230972

ABSTRACT

Osteoporosis is a disease in which bone mineral density decreases due to abnormal activity of osteoclasts, and is commonly found in post-menopausal women who have decreased levels of female hormones. Sphingosylphosphorylcholine (SPC) is an important biological lipid that can be converted to sphingosine-1-phosphate (S1P) by autotaxin. S1P is known to be involved in osteoclast activation by stimulating osteoblasts, but bone regulation by SPC is not well understood. In this study, we found that SPC strongly inhibits RANKL-induced osteoclast differentiation. SPC-induced inhibitory effects on osteoclast differentiation were not affected by several antagonists of S1P receptors or pertussis toxin, suggesting cell surface receptor independency. However, SPC inhibited RANKL-induced calcineurin activation and subsequent NFATc1 activity, leading to decrease of the expression of Trap and Ctsk. Moreover, we found that bone loss in an experimental osteoporosis mouse model was recovered by SPC injection. SPC also blocked ovariectomy-induced body weight increase and Nfatc1 gene expression in mice. We also found that SPC inhibits RANKL-induced osteoclast differentiation in human macrophages. Since currently available treatments for osteoporosis, such as administration of female hormones or hormone receptor modulators, show serious side effects, SPC has potential as a new agent for osteoporosis treatment.


Subject(s)
Calcium/metabolism , Calmodulin/metabolism , Osteoclasts/metabolism , Osteoporosis/metabolism , Ovariectomy/adverse effects , Phosphorylcholine/analogs & derivatives , Sphingosine/analogs & derivatives , Animals , Blotting, Western , Bone Resorption/drug therapy , Bone Resorption/metabolism , Cell Survival/drug effects , Female , Mice , Mice, Inbred C57BL , Osteoclasts/drug effects , Osteoporosis/drug therapy , Phosphorylcholine/therapeutic use , Real-Time Polymerase Chain Reaction , Sphingosine/therapeutic use , X-Ray Microtomography
6.
J Agric Food Chem ; 68(52): 15373-15380, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33345538

ABSTRACT

Weeds are notorious plant species exhibiting a harmful impact on crops. Biological weed control is an efficient and environmentally friendly technique, usually constitutes naturally derived compounds, including bioherbicidal metabolites produced by Streptomyces sp. The isolation and structural identification of phytotoxic compounds from Streptomyces have recently been proposed as an effective way to the discovery of novel bioherbicides. In the screening of bioherbicidal agents, isolated Streptomyces strain KRA17-580 demonstrated significant phytotoxic activity against Digitaria ciliaris. Phylogenetic analysis of the 16S rRNA sequence indicated that isolated KRA17-580 is similar to Streptomyces olivochromogenes. The bacterial culture conditions were optimized for temperature, agitation, and initial pH. Streptomyces strain KRA17-580 showed intense phytotoxic activity and high cell mass at an initial pH of 5.5-7.0, more than 150 rpm, and 25-30 °C. The herbicidal compounds isolated from the culture filtrate of strain KRA17-580 were purified by solvent partition, C18, Sephadex LH20 column chromatography, and high-performance liquid chromatography. By 1D-NMR, 2D-NMR, and electrospray ionization mass spectrometry analysis, the 580-H1 and 580-H2 compounds were identified as a cinnoline-4-carboxamide (MW, 173.0490; C9H7N3O2) and cinnoline-4-carboxylic acid (MW, 174.0503; C9H6N2O2), respectively. Only these two herbicidal compounds showed strong phytotoxic activity against D. ciliaris in foliar applications. However, compound 580-H2 was more phytotoxic than 580-H1 and the toxicity was dose-dependent. The herbicidal metabolite KRA17-580 produced by Streptomyces sp. is a new bioherbicidal candidate that may provide a new lead molecule for more efficient phytotoxic compounds.


Subject(s)
Herbicides/chemistry , Herbicides/pharmacokinetics , Streptomyces/chemistry , Streptomyces/metabolism , Chromatography, High Pressure Liquid , Digitaria/drug effects , Digitaria/growth & development , Herbicides/metabolism , Phylogeny , Plant Weeds/drug effects , Plant Weeds/growth & development , Spectrometry, Mass, Electrospray Ionization , Streptomyces/classification , Streptomyces/genetics
7.
Article in English | MEDLINE | ID: mdl-31438592

ABSTRACT

Expected climatic changes likely elicit serious challenges for crop production. Therefore, it is indispensable to investigate the response of crop growth parameters and yield under temperature variability environments. The current experiment on chilli pepper growth was conducted in a field, rain-shelter plastic house, and plastic greenhouse, with accumulated temperatures of 2832 °C, 2967 °C, and 3105 °C in 2017; and 2944 °C, 3091 °C, and 3168 °C in 2018 growing seasons. Based on soil analysis, 132.7 kg ha-1 (1× of livestock manure compost as an optimum and 265.4 kg ha-1 (2×) as a double amount of organic matter were applied to each simulated temperature condition. The results showed that organic manure application favorably affects the growth attributes and nutrient uptake of chilli pepper with the highest values found in the plastic greenhouse, followed by the rain-shelter house, over the open field cultivation condition. The highest growth of chilli pepper was at the 2× rate of organic manure application, whereas the highest yield was found at the 1× rate of organic manure application. The application of organic manure at the 1× rate in the greenhouse increased root, shoot, and fruit dry weights of chilli pepper by 21.4%, 52.4%, and 79.7%, respectively, compared to the control values. These results indicate that the rational use of organic amendments might be the best solution for chilli pepper production under variable climate conditions.


Subject(s)
Capsicum/growth & development , Fertilizers , Manure , Fruit/growth & development , Plant Roots/growth & development , Plant Shoots/growth & development , Seasons , Soil/chemistry , Temperature
8.
Artif Cells Nanomed Biotechnol ; 44(6): 1529-36, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26212032

ABSTRACT

In the present study, we investigated a novel green route for synthesis of zinc oxide nanoparticles (ZnO NPs) using the extract of young cones of Pinus densiflora as a reducing agent. Standard characterization studies were carried out to confirm the obtained product using UV-Vis spectra, SEM-EDS, FTIR, and XRD. TEM images showed that various shapes of ZnO NPs were synthesized, including hexagonal (wurtzite), triangular, spherical, and oval-shaped particles, with average sizes between 10 and 100 nm. The synthesized ZnO NPs blended with the young pine cone extract have very good activity against bacterial and fungal pathogens, similar to that of commercial ZnO NPs.


Subject(s)
Nanoparticles/chemistry , Pinus/chemistry , Zinc Oxide , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Bacteria/growth & development , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
9.
Artif Cells Nanomed Biotechnol ; 44(6): 1400-5, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26148178

ABSTRACT

The study reports a simple, inexpensive, and eco-friendly synthesis of copper oxide nanoparticles (CuONPs) using Piper betle leaf extract. Formation of CuONPs was confirmed by UV-visible spectroscopy at 280 nm. Transmission electron microscopy (TEM) images showed that the CuONPs were spherical, with an average size of 50-100 nm. The scanning electron microscopy (SEM)-energy dispersive spectroscopy (EDS) peak was observed approximately at 1 and 8 keV. The X-ray diffraction (XRD) studies indicated that the particles were crystalline in nature. CuONPs effectively inhibited the growth of phytopathogens Ralstonia solanacearum and Xanthomonas axonopodis. The cytotoxic effect of the synthesized CuONPs was analyzed using rat splenocytes. The cell viability was decreased to 94% at 300 µg/mL.


Subject(s)
Anti-Bacterial Agents , Copper/chemistry , Cytotoxins , Nanoparticles/chemistry , Piper betle/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Ralstonia solanacearum/growth & development , Spleen/metabolism , Xanthomonas axonopodis/growth & development , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Survival/drug effects , Cells, Cultured , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Cytotoxins/pharmacology , Rats , Rats, Sprague-Dawley , Spleen/cytology
10.
Carbohydr Polym ; 133: 39-45, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26344252

ABSTRACT

In this current study, we report on the reduction of noble metal silver into silver nanoparticles using defatted cashew nut shell (CNS) starch as both the reducing and capping agents. Furthermore, it was compared with commercially available silver nanopowder for the first time. Color changes, ultraviolet-visible spectra (433.76nm), X-ray diffraction peaks (2θ=37.8, 46.3, 66.2, and 77.92) revealed the face-centered cubic (fcc) geometry of silver nanoparticles, scanning electron microscopy-energy dispersive spectroscopy confirmed the presence of elemental silver nanoparticles and the defatted CNS starch silver nanoparticle structures was in accordance to commercial silver nanopowder. The size of both the nanoparticles was found to be similar in the range of 10-50nm as analyzed using high resolution-transmission electron micrographs. The FT-IR spectroscopy revealed the shifting of NH and OH of defatted CNS starch, starch based silver nanoparticle and commercial silver nanopowder has parallel functional groups. The use of environmentally benign and renewable materials like defatted CNS starch offers an alternative to large scale synthesis of silver nanoparticle and includes numerous benefits like eco-friendly and compatibility for pharmaceutical and biomedical applications.


Subject(s)
Anacardium/chemistry , Nuts/chemistry , Silver/chemistry , Starch/chemistry , Metal Nanoparticles/chemistry , Oxidation-Reduction
11.
Plant Pathol J ; 30(1): 25-32, 2014 Mar.
Article in English | MEDLINE | ID: mdl-25288982

ABSTRACT

Fusarium head blight (FHB; scab) caused mainly by Fusarium graminearum is a devastating disease of wheat and barley around the world. FHB causes yield reductions and contamination of grain with trichothecene mycotoxins such as deoxynivalenol (DON) which are a major health concern for humans and animals. The objective of this research was to develop an easy seed or seedling inoculation assay, and to compare these assays with whole plant resistance of twenty-nine Korean winter wheat cultivars to FHB. The clip-dipping assay consists of cutting off the coleoptiles apex, dipping the coleoptiles apex in conidial suspension, covering in plastic bag for 3 days, and measuring the lengths of lesions 7 days after inoculation. There were significant cultivar differences after inoculation with F. graminearum in seedling relative to the controls. Correlation coefficients between the lesion lengths of clip-dipping inoculation and FHB Type II resistance from adult plants were significant (r=0.45; P<0.05). Results from two other seedling inoculation methods, spraying and pin-point inoculation, were not correlated with adult FHB resistance. Single linear correlation was not significant between seed germination assays (soaking and soak-dry) and FHB resistance (Type I and Type II), respectively. These results showed that clip-dipping inoculation method using F. graminearum may offer a real possibility of simple, rapid, and reliable for the early screening of FHB resistance in wheat.

SELECTION OF CITATIONS
SEARCH DETAIL
...