Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Biomol Ther (Seoul) ; 32(2): 249-260, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38355138

ABSTRACT

New supplements with preventive effects against skin photodamage are receiving increasing attention. This study evaluated the anti-photoaging effects of salmon nasal cartilage proteoglycan (SPG), acting as a functional material for skin health. We administered SPG to in vitro and in vivo models exposed to ultraviolet B (UVB) radiation and assessed its moisturizing and anti-wrinkle effects on dorsal mouse skin and keratinocytes and dermal fibroblasts cell lines. These results showed that SPG restored the levels of filaggrin, involucrin, and AQP3 in the epidermis of UVB-irradiated dorsal skin and keratinocytes, thereby enhancing the keratinization process and water flow. Additionally, SPG treatment increased the levels of hyaluronan and skin ceramide, the major components of intercellular lipids in the epidermis. Furthermore, SPG treatment significantly increased the levels of collagen and procollagen type 1 by down-regulating matrix metalloproteinase 1, which play a crucial role in skin fibroblasts, in both in vitro and in vivo models. In addition, SPG strongly inhibited mitogen-activated protein kinase (MAPKs) signaling, the including extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK), and p38. These findings suggest that dietary SPG may be an attractive functional food for preventing UVB-induced photoaging. And this SPG product may provide its best benefit when treating several signs of skin photoaging.

3.
J Ethnopharmacol ; 294: 115370, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35568114

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pharbitis nil (L.) Choisy is a medicinal herb, and herbal remedies based on its seeds have been used to treat of obesity and liver diseases, including fatty liver and liver cirrhosis in East Asia. AIM OF THE STUDY: Liver fibrosis is a major cause of morbidity and mortality in patients with chronic liver inflammation such as that caused by non-alcoholic steatohepatitis. However, no effective pharmaceutical treatment for liver fibrosis has been approved. In this study, we aimed to investigate that ethanol extract of pharbitis nil (PNE) alleviates the liver fibrosis. MATERIALS AND METHODS: We studied the effects of PNE on two preclinical models. Six-week-old male C57BL/6 mice were intraperitoneally injected with CCl4 twice weekly for 6 weeks and then treated with 5 or 10 mg/kg PNE daily from week 3 for weeks. Secondly, mice were fed HFD for 41 weeks and at 35 weeks treated with 5 mg/kg PNE daily for the remaining 6 weeks. In addition, we examined the antifibrotic effects of PNE in primary mouse hepatic stellate cells and LX-2 cells. RESULTS: PNE treatment ameliorated hepatocyte necrosis, inflammation, and liver fibrosis in CCl4-treated mice and inhibited the progression of liver fibrosis in mice with HFD-induced fibrosis. PNE reduced the expressions of fibrosis markers and SMAD2/3 activations in mouse livers and in TGFß1-treated primary mouse hepatic stellate and LX-2 cells CONCLUSIONS: This study demonstrates that PNE attenuates liver fibrosis by downregulating TGFß1-induced SMAD2/3 activation.


Subject(s)
Ipomoea nil , Non-alcoholic Fatty Liver Disease , Animals , Ethanol/pharmacology , Fibrosis , Hepatic Stellate Cells , Humans , Inflammation/pathology , Ipomoea nil/metabolism , Liver/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Smad2 Protein/metabolism , Transforming Growth Factor beta1/metabolism
4.
J Clin Med ; 8(8)2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31370192

ABSTRACT

Lespedeza bicolor (LB) is often used in traditional medicine to remove toxins, replenish energy stores, and regulate various symptoms of diabetes. This study aimed to explore the use of LB as a therapeutic to prevent diabetic nephropathy in methylglyoxal (MGO)-treated models in vitro and in vivo. Western blotting, immunostaining, and biochemical assays were used to obtain several experimental readouts in renal epithelial cells (LLC-PK1) and BALB/c mice. These include: production of reactive oxygen species (ROS), formation of advanced glycation end-products (AGEs), expression of receptor for advanced glycation end-products (RAGE), apoptotic cell death, glucose levels, fatty acid and triglyceride levels, expression of pro-inflammatory cytokines IL-1ß and TNF-α, glyoxalase 1 (Glo1), and nuclear factor erythroid 2-related factor 2 (Nrf2). Pretreatment with LB significantly reduced MGO-induced cellular apoptosis, intracellular production of ROS, and formation of AGEs to ameliorate renal dysfunction in vitro and in vivo. Interestingly, administering LB in MGO-treated cells and mice upregulated the expression of Nrf2 and Glo1, and downregulated the expression of IL-1ß and TNF-α. Moreover, LB reduced MGO-induced AGE accumulation and RAGE expression in the kidneys, which subsequently reduced AGE-RAGE interactions. Overall, LB ameliorates renal cell apoptosis and corrects renal dysfunction in MGO-treated mice. These findings extend our understanding of the pathogenic mechanism of MGO-induced nephrotoxicity and regulation of the AGE/RAGE axis by Lespedeza bicolor.

5.
Physiol Behav ; 210: 112624, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31325512

ABSTRACT

Pyrus ussuriensis Maxim. commonly known as "Sandolbae" in Korean is a pear tree widely distributed across East Asia. Recent studies indicate that P. ussuriensis Maxim. leaves (PUL) have antipruritic effects. This study aimed to determine the effects of PUL extract and its fractions in decreasing the itch sensation and skin lesions in two distinct animal models of atopic dermatitis (AD) induced by dinitrofluorobenzene (DNFB) or house dust mite (HDM). Our results showed that the total ethanol extract of PUL decreased the scratching behavior in mice with DNFB- and HDM-induced AD. Moreover, the ethyl acetate fraction of PUL significantly improved the overall condition of the mice with AD induced by HDM. Further, we used HEK293T cells that express receptors and ion channels for thymic stromal lymphopoietin (TSLP), a potent pruritogen for AD, to determine the mechanisms underlying the antipruritic effects of PUL extract/fractions. Specific subfractions of the PUL strongly inhibited the increase in calcium levels induced by TSLP. In addition, the specific subfraction of PUL inhibited the TSLP-induced increase in calcium levels in cultured mouse dorsal root ganglia neurons. Thus, our results showed that the PUL extract could be effective for alleviating pruritus, and the antipruritic effects were exerted probably via the inhibition of the TSLP pathway in peripheral sensory neurons governing the itch sensation in AD.


Subject(s)
Antipruritics/therapeutic use , Cytokines/drug effects , Dermatitis, Atopic/drug therapy , Plant Extracts/therapeutic use , Pruritus/drug therapy , Pyrus/chemistry , Animals , Antipruritics/pharmacology , Calcium Signaling/drug effects , Cytokines/genetics , Dermatitis, Atopic/genetics , Dinitrofluorobenzene , Ethanol , Ganglia, Spinal/drug effects , HEK293 Cells , Humans , Male , Mice , Mice, Inbred ICR , Neurons/drug effects , Plant Extracts/pharmacology , Pruritus/chemically induced , Pyroglyphidae/immunology , Solvents , Thymic Stromal Lymphopoietin
6.
Oxid Med Cell Longev ; 2019: 3549274, 2019.
Article in English | MEDLINE | ID: mdl-31049133

ABSTRACT

Activated microglia-mediated neuroinflammation plays a key pathogenic role in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and ischemia. Sulforaphane is an active compound produced after conversion of glucoraphanin by the myrosinase enzyme in broccoli (Brassica oleracea var) sprouts. Dietary broccoli extract as well as sulforaphane has previously known to mitigate inflammatory conditions in aged models involving microglial activation. Here, we produced sulforaphane-enriched broccoli sprouts through the pretreatment of pulsed electric fields in order to trigger the biological role of normal broccoli against lipopolysaccharide-activated microglia. The sulforaphane-enriched broccoli sprouts showed excellent potency against neuroinflammation conditions, as evidenced by its protective effects in both 6 and 24 h of microglial activation in vitro. We further postulated the underlying mechanism of action of sulforaphane in broccoli sprouts, which was the inhibition of an inflammatory cascade via the downregulation of mitogen-activated protein kinase (MAPK) signaling. Simultaneously, sulforaphane-enriched broccoli sprouts inhibited the LPS-induced activation of the NF-κB signaling pathway and the secretions of inflammatory proteins (iNOS, COX-2, TNF-α, IL-6, IL-1ß, PGE2, etc.), which are responsible for the inflammatory cascades in both acute and chronic inflammation. It also upregulated the expression of Nrf2 and HO-1 in normal and activated microglia followed by the lowered neuronal apoptosis induced by activated microglia. Based on these results, it may exhibit anti-inflammatory effects via the NF-κB and Nrf2 pathways. Interestingly, sulforaphane-enriched broccoli sprouts improved the scopolamine-induced memory impairment in mice through Nrf2 activation, inhibiting neuronal apoptosis particularly through inhibition of caspase-3 activation which could lead to the neuroprotection against neurodegenerative disorders. The present study suggests that sulforaphane-enriched broccoli sprouts might be a potential nutraceutical with antineuroinflammatory and neuroprotective activities.


Subject(s)
Amnesia , Brassica/chemistry , Heme Oxygenase-1/metabolism , Isothiocyanates , NF-E2-Related Factor 2/metabolism , Scopolamine/adverse effects , Amnesia/chemically induced , Amnesia/drug therapy , Amnesia/metabolism , Amnesia/pathology , Animals , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Isothiocyanates/chemistry , Isothiocyanates/pharmacology , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred ICR , Microglia/metabolism , Microglia/pathology , Scopolamine/pharmacology , Sulfoxides
7.
Int J Mol Sci ; 20(6)2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30901835

ABSTRACT

Resveratrol-enriched rice (RR) was developed using genetic engineering to combine the properties of resveratrol and rice. To evaluate the effect of RR on pruritic skin inflammation in atopic dermatitis (AD)-like skin lesions, we used dinitrochlorobenzene (DNCB)-induced NC/Nga mice and an in vitro 3D skin model. Normal rice (NR), resveratrol, and RR were topically applied to mice dorsal skin, following which the dermatitis index and scratching frequency were calculated. Histological examination was performed by hematoxylin and eosin and immunohistochemistry staining of IL-31 level. The level of immunoglobulin E (IgE) and IL-31 in the serum was determined by enzyme-linked immunosorbent assay (ELISA). The cytotoxicity of RR and the expression levels of pro-inflammatory cytokines were also determined in cultured human keratinocytes and a 3D skin model. RR significantly reduced scratching frequency, decreased the dermatitis severity and trans-epidermal water loss (TEWL) and improved skin hydration in DNCB-induced NC/Nga mice. RR also significantly decreased serum IL-31 and IgE levels and suppressed the production of IL-6 in human keratinocytes and the 3D skin model. Our study indicates that the synergistic effect of rice and resveratrol manifested by the topical application of RR can serve as a potential alternative therapy for chronic skin inflammatory diseases such as AD.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dermatitis/drug therapy , Oryza/chemistry , Plant Extracts/pharmacology , Pruritus/drug therapy , Animals , Anti-Inflammatory Agents/chemistry , Cytokines/metabolism , Dermatitis/etiology , Dermatitis/pathology , Disease Models, Animal , Immunoglobulin E/blood , Immunoglobulin E/immunology , Inflammation Mediators , Interleukins/blood , Mice , Plant Extracts/chemistry , Pruritus/etiology , Pruritus/pathology
8.
Nutrients ; 11(2)2019 Jan 27.
Article in English | MEDLINE | ID: mdl-30691219

ABSTRACT

Pyrus ussuriensis Maxim, a pear commonly known as "Sandolbae" in Korea, is used as a traditional herbal medicine for asthma, cough, and fever in Korea, China, and Japan. P. ussuriensis Maxim leaves (PUL) have therapeutic effects on atopic dermatitis (AD). However, there are no reports on the efficacy of specific components of PUL. In the present study, activity-guided isolation of PUL was used to determine the compounds with potent activity. Astragalin was identified as the major component of the chloroform-soluble fraction of PUL (PULC) using High-performance liquid chromatography (HPLC) analysis. Astragalin and PULC were tested in vitro and in vivo for their effects against AD. PULC and astragalin dose-dependently inhibited the production of nitric oxide (NO) in mouse macrophage (RAW 264.7) cells, and interleukin (IL)-6 and IL-1ß in tumor necrosis factor (TNF-α)/interferon γ (IFNγ) induced HaCaT cells. In the AD mice model, PULC and astragalin application significantly reduced dermatitis severity, scratching behavior, and trans-epidermal water loss (TEWL) when compared to that of 2, 4-dinitrochlorobenzene-treated NC/Nga mice. Additionally, they normalized skin barrier function by decreasing immunoglobulin E (IgE) levels in the serum. Filaggrin and involucrin protein levels were normalized by PULC treatment in HaCaT cells and skin lesions. These results indicate that PULC and astragalin ameliorate AD-like symptoms by alleviating both pro-inflammatory cytokines and immune stimuli in vitro and in vivo in animal models. Therefore, PULC and astragalin might be effective therapeutic agents for the treatment of AD.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dermatitis, Atopic/metabolism , Plant Extracts/pharmacology , Pyrus/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Behavior, Animal/drug effects , Cell Line , Chloroform/chemistry , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/pathology , Dinitrochlorobenzene/adverse effects , Filaggrin Proteins , Humans , Interferon-gamma/metabolism , Interleukin-6/metabolism , Kaempferols/analysis , Mice , Plant Extracts/chemistry , RAW 264.7 Cells , Skin/drug effects , Skin/metabolism , Skin/pathology
9.
Phytomedicine ; 48: 76-83, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30195883

ABSTRACT

PURPOSE: Pyrus ussuriensis Maxim. has been reported to treat the fever, cough, asthma, and chronic skin disease in Korean Medicine. However, there is no scientific evidence for the use of Pyrus ussuriensis Maxim. Leaves (PUL) extract or its mechanism of action in atopic dermatitis (AD). This study was performed to find the potential therapeutic effects of PUL on the progression of AD using in vitro and in vivo experimental models. METHODS: We examined the effects of PUL on the production of nitric oxide (NO) in RAW 264.7, Interleukin 6 (IL-6) and Interleukin 1ß (IL-1ß) in tumor necrosis factor α (TNF-α) -induced HaCaT cells, respectively. The PUL extract was topically administered to the 2,4-Dinitrochlorobenzene (DNCB) -treated NC/Nga mice. The potential effects of PUL extract were evaluated by measuring the dermatitis score, scratching behavior and serum levels of immunoglobulin E (IgE). The Interleukin 4 (IL-4) and Interleukin 13 (IL-13) cytokines levels were also measured in the splenocytes. In addition, the major components from PUL were analyzed using high performance liquid chromatography (HPLC). RESULTS: PUL extract significantly reduced the level of NO in RAW 264.7 cells, as well as IL-6 and IL-1ß in TNF-α-induced HaCaT cells. It also reduced IL-4 and IL-13 levels in splenocytes. In DNCB-treated NC/Nga mice, PUL extract significantly ameliorated the dermatitis severity, scratching tendency and transepidermal water loss (TEWL) compared to the negative control. Also, it normalized skin barriers with decreased production of IgE in mice serum. The arbutin, chlorogenic acid, and rutin were identified as major constituents of the extract by HPLC analysis. These constituents may be involved either alone or together in the regulation of atopic dermatitis. CONCLUSION: Our studies indicate that PUL ameliorates atopic dermatitis-like symptoms by suppressing the proinflammatory cytokines and immune stimuli in both in vitro and in vivo animal models. Therefore, these data suggest that PUL might be an effective natural resource for the treatment of AD.


Subject(s)
Dermatitis, Atopic/drug therapy , Plant Extracts/pharmacology , Pyrus/chemistry , Animals , Cell Line , Dermatitis, Atopic/chemically induced , Dinitrochlorobenzene , Female , Humans , Immunoglobulin E/blood , Interleukin-13/metabolism , Interleukin-1beta/metabolism , Interleukin-4/metabolism , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Plant Leaves/chemistry , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...