Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 12(5)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403237

ABSTRACT

BACKGROUNDS: Radioimmunotherapy (RIT) serves as a targeted therapy for non-Hodgkin lymphomas (NHL). Although HIF(Hypoxia-inducible factors)-1α is an important biomarker during radiation therapy, its role in NHL is unclear. Atorvastatin (ATV) is used as a combination drug for chemotherapy. METHODS: We investigated whether ATV downregulated tumor radio-resistance and enhanced the anticancer effect of 131I-RTX (rituximab) in Raji xenograft mouse models. First, the increased uptake and enhanced therapeutic effect of 131I-RTX by ATV was confirmed using molecular imaging in Raji xenograft subcutaneous model and orthotropic model with SPECT and IVIS images. Second, we examined the profile of differentially expressed miRNAs using miRNA array. RESULTS: We found that miR-346 inhibited HIF-1α/VEGF (Vascular endothelial growth factor) during ATV combination therapy with 131I-RTX. The underlying mechanism of ATV involved induction of anti-angiogenesis and radiosensitivity by downregulating HIF-1α in Raji cells. CONCLUSION: Our findings suggested that combination therapy with ATV and 131I-RTX is a promising strategy for enhancing the potency of 131I-RTX therapy in poorly responding patients and those with radio-resistance.

2.
Immunology ; 143(1): 21-32, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24628121

ABSTRACT

Platelet-activating factor (PAF) promotes tumour metastasis via activation of the transcription factor nuclear factor-κB (NF-κB). We here investigated the role of the protein kinase CK2 (formerly Casein Kinase 2 or II) in PAF-induced NF-κB activation and tumour metastasis, given that PAF has been reported to increase CK2 activity, and that CK2 plays a key role in NF-κB activation. PAF increased CK2 activity, phosphorylation and protein expression in vivo as well as in vitro. CK2 inhibitors inhibited the PAF-mediated NF-κB activation and expression of NF-κB-dependent pro-inflammatory cytokines and anti-apoptotic factors. Pre-treatment with the antioxidant N-Acetyl-L-Cysteine (NAC) resulted in a significant inhibition in PAF-induced enhancement of CK2 activity, phosphorylation and protein expression in vivo as well as in vitro. H2 O2 and known reactive oxygen species inducers, lipopolysaccharide (LPS) and tumour necrosis factor-α (TNF-α) enhanced CK2 activity, phosphorylation and protein expression, which was again inhibited by antioxidant. PAF, LPS and TNF-α induced increased CK2 activity, phosphorylationand protein expression, which were inhibited by p38 inhibitor. PAF, LPS or TNF-α increased pulmonary metastasis of B16F10, which was inhibited by antioxidants, CK2 inhibitor and p38 inhibitor. Our data suggest that (i) reactive oxygen species activate CK2 via p38, which, in turn, induces NF-κB activation, and (ii) PAF, LPS and TNF-α increase pulmonary tumour metastasis via the induction of the reactive oxygen species (ROS)/p38/CK2/NF-κB pathway.


Subject(s)
Casein Kinase II/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , NF-kappa B/metabolism , Platelet Activating Factor/metabolism , Reactive Oxygen Species/metabolism , Animals , Blotting, Western , Disease Models, Animal , Electrophoretic Mobility Shift Assay , Enzyme Activation/physiology , Immunohistochemistry , Mice , Mice, Inbred C57BL , Neoplasm Invasiveness/pathology , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...