Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Biochem Biophys Res Commun ; 696: 149517, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38219487

ABSTRACT

Emerging evidence indicates that the immunomodulatory effect of mesenchymal stem cells (MSCs) is primarily attributed to the paracrine pathway. As a key paracrine effector, MSC-derived exosomes are small vesicles that play an important role in cell-to-cell communication by carrying bioactive substances. We previously found that exosomes derived from tonsil-derived mesenchymal stem cells (T-MSCs) were able to effectively attenuate inflammatory responses in mast cells. Here we investigated how T-MSC exosomes impact mast cells in steady state, and how exposure of T-MSCs to Toll-like receptors (TLRs) ligands changes this impact. Transcriptomic analysis of HMC-1 cells, a human mast cell line, using DNA microarrays showed that T-MSC exosomes broadly regulate genes involved in the normal physiology of mast cells. TLR3 or TLR4 primed T-MSC exosomes impacted fewer genes involved in specific functions in mast cells. This distinguishable regulation also was apparent in the analysis of related gene interactions. Our results suggest that MSC exosomes maintain immune homeostasis in normal physiology and impact the inflammatory state by modulating mast cell transcription.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Humans , Mast Cells , Exosomes/genetics , Exosomes/metabolism , Cell Communication , Mesenchymal Stem Cells/metabolism , Gene Expression
2.
J Hosp Palliat Nurs ; 26(1): E30-E37, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38113305

ABSTRACT

The purpose of this study was to test the reliability and validity of the Advance Care Planning Engagement Survey-9 Korean version in patients with cardiovascular diseases or metabolic syndrome. In this cross-sectional study, data on advance care planning engagement, registration of advance directives and the intention, and sociodemographic characteristics were collected from 105 patients (mean age, 66.3 years) at 4 medical institutions. Cronbach α was used to test the reliability. Confirmatory factor analysis and independent t tests were used to test the validity. Cronbach α s for the total scale and the self-efficacy and readiness dimensions were .93, .82, and .97, respectively. In confirmatory factor analysis with 2 factors, all indices of model fit were acceptable: comparative fit index, 0.995; Tucker-Lewis index, 0.989; standardized root-mean-square residual, 0.024; root-mean-square error of approximation, 0.059; and factor loadings > 0.65. Patients who registered advance directives ( P < .001) or had the intention ( P < .001) had higher scores of the Advance Care Planning Engagement Survey-9 Korean version than their counterparts. The findings demonstrate that the Advance Care Planning Engagement Survey-9 Korean version was a reliable and valid instrument. Health care providers, including nurses, can use this instrument to assess and manage advance care planning engagement in Korean patients with cardiovascular diseases or metabolic syndrome.


Subject(s)
Advance Care Planning , Cardiovascular Diseases , Metabolic Syndrome , Humans , Aged , Psychometrics , Cross-Sectional Studies , Reproducibility of Results
3.
PLoS One ; 18(10): e0292135, 2023.
Article in English | MEDLINE | ID: mdl-37796889

ABSTRACT

Provision of palliative care to patients with advanced chronic diseases or old populations is suboptimal, which results in unnecessary suffering of and burden to patients, caregivers, and society. Low self-efficacy in palliative care among nurses is a factor affecting suboptimal utilization of palliative care. Poor knowledge is a factor affecting low self-efficacy in palliative care of nurses. Attitudes may contribute to the relationship between knowledge and self-efficacy in palliative care, but these relationships have been rarely examined in nurses. This study aimed to determine whether nurses' attitudes moderate the relationship between knowledge and self-efficacy in palliative care. In a cross-sectional, correlational study, online or offline survey on self-efficacy, knowledge, attitudes, and covariates was conducted from 282 nurses in South Korea. PROCESS v4.1 for SPSS was used to address the study aim. Higher levels of knowledge (p = .048) and attitudes (p < .001), and the interaction term of knowledge and attitudes (p = .025) were significantly associated with higher levels of self-efficacy (F = 6.12, p < .001, R2 = .152), indicating the moderating effects of attitudes. The relationships between higher levels of knowledge and self-efficacy were significant only in nurses with highly and moderately positive attitudes (R2 change = .016, F = 5.11, p = .025), but not nurses with lack of positive attitudes. Our results supported the moderating role of nurses' attitudes in the relationship between knowledge and self-efficacy. To improve self-efficacy in palliative care in nurses, improvement in knowledge and facilitation of positive attitudes are needed.


Subject(s)
Nurses , Palliative Care , Humans , Palliative Care/methods , Cross-Sectional Studies , Self Efficacy , Health Knowledge, Attitudes, Practice , Surveys and Questionnaires , Attitude of Health Personnel
4.
Tissue Eng Regen Med ; 20(2): 271-284, 2023 04.
Article in English | MEDLINE | ID: mdl-36462090

ABSTRACT

BACKGROUND: To achieve optimal bone marrow engraftment during bone marrow transplantation, migration of donor bone marrow cells (BMCs) toward the recipient's bone marrow is critical. Despite the enhanced engraftment of BMCs by co-administration of mesenchymal stem cells (MSCs), the efficiency can be variable depending on MSC donor. The purpose of this study is to examine the functional heterogeneity of tonsil-derived MSCs (TMSCs) and to identify a marker to evaluate efficacy for the enhancement of BMC migration. METHODS: To examine the donor-to-donor variation of TMSCs in potentiating BMC migration, we isolated TMSCs from 25 independent donors. Transcriptome of TMSCs and proteome of conditioned medium derived from TMSC were analyzed. RESULTS: Enhanced BMC migration by conditioned medium derived from TMSCs was variable depending on TMSC donor. The TMSCs derived from 25 donors showed distinct expression profiles compared with other cells, including fibroblasts, adipose-derived MSCs and bone marrow-derived MSCs. TMSCs were distributed in two categories: high- and low-efficacy groups for potentiating BMC migration. Transcriptome analysis of TMSCs and proteome profiles of conditioned medium derived from TMSCs revealed higher expression and secretion of matrix metalloproteinase (MMP) 1 in the high-efficacy group. MMP1 knockdown in TMSCs abrogated the supportive efficacy of conditioned medium derived from TMSC cultures in BMC migration. CONCLUSION: These data suggest that secreted MMP1 can be used as a marker to evaluate the efficacy of TMSCs in enhancing BMC migration. Furthermore, the strategy of analyzing transcriptomes and proteomes of the MSCs may be useful to set the standard for donor variation.


Subject(s)
Mesenchymal Stem Cells , Palatine Tonsil , Bone Marrow Cells , Culture Media, Conditioned/pharmacology , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Mesenchymal Stem Cells/metabolism , Proteome/metabolism , Humans
5.
PLoS One ; 17(6): e0266857, 2022.
Article in English | MEDLINE | ID: mdl-35648740

ABSTRACT

Obesity, which has become a major global health problem, involves a constitutive increase in adipocyte differentiation signaling. Previous studies show that mesenchymal stem cells (MSCs) induce weight loss and glycemic control. However, the mechanisms by which MSCs regulate adipocyte differentiation are not yet known. In this study, we investigated the effects of conditioned medium obtained from human tonsil-derived MSCs (T-MSC CM) on adipocyte differentiation. We found that T-MSC CM attenuated adipocyte differentiation from early stages via inhibiting glucocorticoid signaling. T-MSC CM also increased the phosphorylation of p38 mitogen-activated protein kinase and glucocorticoid receptors and decreased the subsequent nucleus translocation of glucocorticoid receptors. Chronic treatment of mice with synthetic glucocorticoids induced visceral and bone marrow adipose tissue expansion, but these effects were not observed in mice injected with T-MSC CM. Furthermore, T-MSC CM injection protected against reductions in blood platelet counts induced by chronic glucocorticoid treatment, and enhanced megakaryocyte differentiation was also observed. Collectively, these results demonstrate that T-MSC CM exerts inhibitory effects on adipocyte differentiation by regulating glucocorticoid signal transduction. These findings suggest that the therapeutic application of T-MSC CM could reduce obesity by preventing adipose tissue expansion.


Subject(s)
Glucocorticoids , Mesenchymal Stem Cells , Adipocytes/metabolism , Animals , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Glucocorticoids/metabolism , Glucocorticoids/pharmacology , Humans , Immunologic Factors/pharmacology , Mice , Obesity/metabolism , Palatine Tonsil , Receptors, Glucocorticoid/metabolism
6.
Biology (Basel) ; 11(2)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35205121

ABSTRACT

Reactive oxygen species (ROS) generated by neutrophils provide a frontline defence against invading pathogens. We investigated the supportive effect of tonsil-derived mesenchymal stem cells (TMSCs) on ROS generation from neutrophils using promyelocytic HL-60 cells. Methods: Differentiated HL-60 (dHL-60) cells were cocultured with TMSCs isolated from 25 independent donors, and ROS generation in dHL-60 cells was measured using luminescence. RNA sequencing and real-time PCR were performed to identify the candidate genes of TMSCs involved in augmenting the oxidative burst of dHL-60 cells. Transcriptome analysis of TMSCs derived from 25 independent donors revealed high levels of procollagen C-endopeptidase enhancer 2 (PCOLCE2) in TMSCs, which were highly effective in potentiating ROS generation in dHL-60 cells. In addition, PCOLCE2 knockdown in TMSCs abrogated TMSC-induced enhancement of ROS production in dHL-60 cells, indicating that TMSCs increased the oxidative burst in dHL-60 cells via PCOLCE2. Furthermore, the direct addition of recombinant PCOLCE2 protein increased ROS production in dHL-60 cells. These results suggest that PCOLCE2 secreted by TMSCs may be used as a therapeutic candidate to enhance host defences by increasing neutrophil oxidative bursts. PCOLCE2 levels in TMSCs could be used as a marker to select TMSCs exhibiting high efficacy for enhancing neutrophil oxidative bursts.

7.
Tissue Eng Regen Med ; 19(1): 131-139, 2022 02.
Article in English | MEDLINE | ID: mdl-35013919

ABSTRACT

BACKGROUND: Therapeutic strategies that can promote platelet production are in demand to enhance clinical outcomes of bone marrow transplantation (BMT). Our research group has studied human tonsil-derived mesenchymal stem cells (T-MSCs) and their effectiveness in promoting bone marrow (BM) engraftment. Here, we analyzed the effects of T-MSCs on platelet production and hemostasis. METHODS: Donor BM cells (BMCs) were isolated from C57BL/6 mice and transplanted with or without T-MSCs to BALB/c recipient mice. Mice were sacrificed and blood cells were counted using an Auto Hematology Analyzer. Femur sections were stained with CD41 antibody to analyze megakaryocytes in the BM. Growth factor secretion from MSCs was analyzed using the Quantibody Array. Effects of T-MSC conditioned medium (CM) on megakaryopoiesis were investigated using the MegaCult assay. In a mouse model of BMT, T-MSC CM was injected with or without anti-placental growth factor (α-PlGF) blocking antibody, and blood cell numbers and coagulation were analyzed. RESULTS: T-MSC co-transplantation increased percent survival of BMT mice. Platelet numbers were significantly lower in the BMC-only group, whereas T-MSC co-transplantation restored circulating platelets to levels similar to those of the control group. Significantly reduced numbers of CD41 + megakaryocytes in Bu-Cy and BMC groups were increased by T-MSC co-transplantation. PlGF secretion from T-MSCs were detected and enhanced megakaryopoiesis, platelet production, and coagulation by T-MCS CM were disrupted in the presence of the α-PlGF blocking antibody. CONCLUSION: We demonstrated the effectiveness of T-MSC co-transplantation in promoting platelet production and coagulation after BMT. These findings highlight the potential therapeutic relevance of T-MSCs for preventing thrombocytopenia after BMT.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Bone Marrow Cells , Bone Marrow Transplantation , Mice , Mice, Inbred C57BL
8.
Tissue Eng Regen Med ; 19(1): 117-129, 2022 02.
Article in English | MEDLINE | ID: mdl-34792754

ABSTRACT

BACKGROUND: Mast cells are immune sentinels in the skin that respond to a wide range of pathological and environmental stimuli; they owe their function to the expression of Toll-like receptors (TLRs). We previously found that tonsil-derived mesenchymal stem cells (T-MSCs) were able to effectively attenuate TLR7-mediated skin inflammation in mice, which was accompanied by an increase in mast cell number. The present study investigated whether T-MSC extracellular vesicles, such as exosomes, are able to regulate mast cell activation in response to TLR7 stimulation. METHODS: The HMC-1 human mast cell line was treated with a TLR7 agonist in the presence or absence of T-MSC exosomes, and the levels of expressed inflammatory cytokines were assessed. Additionally, mice were repeatedly injected with a TLR7 agonist with or without interval treatments with T-MSC exosomes and assessed dermal distribution of mast cells and related immune cells. RESULTS: We showed that T-MSC exosomes containing microRNAs that target inflammatory cytokines significantly reduced the expression of inflammatory cytokines in TLR7 agonist-treated HMC-1 cells. In addition, T-MSC exosomes inhibited the increase in the number of both dermal mast cells and CD14-positive cells in TLR7 agonist-treated mice. CONCLUSION: Our data suggest that T-MSC exosomes have regulatory effects on mast cell activation under inflammatory conditions, including TLR7 stimulation.


Subject(s)
Exosomes , Membrane Glycoproteins/immunology , Mesenchymal Stem Cells , MicroRNAs , Toll-Like Receptor 7/immunology , Animals , Exosomes/metabolism , Mast Cells/metabolism , Mesenchymal Stem Cells/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Toll-Like Receptor 7/metabolism
9.
Sci Rep ; 11(1): 19589, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34599237

ABSTRACT

Tonsil-derived mesenchymal stem cells (TMSCs) showed therapeutic effects on acute and chronic murine colitis models, owing to their immunomodulatory properties; therefore, we evaluated enhanced therapeutic effects of TMSCs on a murine colitis model using three-dimensional (3D) culture method. The expression of angiogenic factors, VEGF, and anti-inflammatory cytokines, IL-10, TSG-6, TGF-ß, and IDO-1, was significantly higher in the 3D-TMSC-treated group than in the 2D-TMSC-treated group (P < 0.05). At days 18 and 30 after inducing chronic colitis, disease activity index scores were estimated to be significantly lower in the 3D-TMSC-treated group than in the colitis control (P < 0.001 and P < 0.001, respectively) and 2D-TMSC-treated groups (P = 0.022 and P = 0.004, respectively). Body weight loss was significantly lower in the 3D-TMSC-treated group than in the colitis control (P < 0.001) and 2D-TMSC-treated groups (P = 0.005). Colon length shortening was significantly recovered in the 3D-TMSC-treated group compared to that in the 2D-TMSC-treated group (P = 0.001). Histological scoring index was significantly lower in the 3D-TMSC-treated group than in the 2D-TMSC-treated group (P = 0.002). These results indicate that 3D-cultured TMSCs showed considerably higher therapeutic effects in a chronic murine colitis model than those of 2D-cultured TMSCs via increased anti-inflammatory cytokine expression.


Subject(s)
Cell Culture Techniques, Three Dimensional , Colitis/therapy , Mesenchymal Stem Cell Transplantation , Palatine Tonsil/cytology , Animals , Child , Colitis/chemically induced , Colitis/pathology , Cytokines/metabolism , Dextran Sulfate , Disease Models, Animal , HEK293 Cells , Humans , Male , Mesenchymal Stem Cells/cytology , Mice, Inbred C57BL
10.
Int J Mol Med ; 48(6)2021 12.
Article in English | MEDLINE | ID: mdl-34676871

ABSTRACT

Mesenchymal stem cells (MSCs) are mesoderm­originated adult SCs that possess multidirectional differentiation potential. MSCs migrate to injured tissue and secrete a range of paracrine factors that induce regeneration in damaged tissue and exert immune modulation. Because tumor progression is dependent on cross­talk between the tumor and its microenvironment, MSCs also produce extracellular vesicles (EVs) that mediate information transfer in the tumor microenvironment. However, the effect of MSC­derived EVs on tumor development and progression is still controversial. To date, tonsil­derived MSCs (T­MSCs) have been shown to possess all the defined characteristics of MSCs and show distinctive features of differential potential and immune modulation. To observe the effect of soluble mediators from T­MSCs on tumor growth, human liver cancer cell line (HepG2) cells were injected into nude mice and HepG2 cell scratch migration assay was performed using conditioned medium (CM) of T­MSCs. T­MSC CM inhibited tumor growth and progression and it was hypothesized that EVs from T­MSCs could inhibit tumor progression. microRNA (miRNA or miR) sequencing using five different origins of T­MSC­derived EVs was performed and highly expressed miRNAs, such as miR­199a­3p, miR­214­3p, miR­199a­5p and miR­199b­5p, were selected. T­MSCs inhibited tumor growth and HepG2 cell migration, potentially via miR­199a­3p targeting CD151, integrin α3 and 6 in HepG2 cells.


Subject(s)
Extracellular Vesicles/metabolism , Liver Neoplasms/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Palatine Tonsil/metabolism , Animals , Cell Differentiation/physiology , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude
11.
Ann Dermatol ; 33(5): 402-408, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34616120

ABSTRACT

BACKGROUND: Mast cells are skin immune sentinels located in the upper dermis, where wheal formation and sensory nerve stimulation take place. Skin inflammation is occasionally accompanied by mast cell-driven responses with wheals, angioedema, or both. Immunoglobulin E (IgE) antibodies are regarded as typical stimuli to drive mast cell activation. However, various causative factors, including microbial infections, can drive IgE-independent mast cell response. When infected, the innate immunity orchestrates an immune response by activating receptor signaling via Toll-like receptors (TLRs). OBJECTIVE: In this study, we determined the effect of TLR7 stimulation on mast cells to investigate the possible mechanism of IgE-independent inflammatory response. METHODS: Human mast cell (HMC) line, HMC-1 cells were treated with TLR7 agonist and the morphologic alteration was observed in transmission electron microscopy. Further, TLR7 agonist treated HMC-1 cells were conducted to RNA sequencing to compare transcriptomic features. RESULTS: HMC-1 cells treated with TLR7 agonist reveals increase of intracellular vesicles, lipid droplets, and ribosomes. Also, genes involved in pro-inflammatory responses such as angiogenesis are highly expressed, and Il12rb2 was the most highly upregulated gene. CONCLUSION: Our data suggest that TLR7 signaling on mast cells might be a potential therapeutic target for mast cell-driven, IgE-independent skin inflammation.

12.
Cells ; 10(8)2021 08 23.
Article in English | MEDLINE | ID: mdl-34440938

ABSTRACT

Skeletal muscle mass is decreased under a wide range of pathologic conditions. In particular, chemotherapy is well known for inducing muscle loss and atrophy. Previous studies using tonsil-derived mesenchymal stem cells (T-MSCs) or a T-MSC-conditioned medium showed effective recovery of total body weight in the chemotherapy-preconditioned bone marrow transplantation mouse model. This study investigated whether extracellular vesicles of T-MSCs, such as exosomes, are a key player in the recovery of body weight and skeletal muscle mass in chemotherapy-treated mice. T-MSC exosomes transplantation significantly decreased loss of total body weight and muscle mass in the busulfan-cyclophosphamide conditioning regimen in BALB/c recipient mice containing elevated serum activin A. Additionally, T-MSC exosomes rescued impaired C2C12 cell differentiation in the presence of activin A in vitro. We found that T-MSC exosomes possess abundant miR-145-5p, which targets activin A receptors, ACVR2A, and ACVR1B. Indeed, T-MSC exosomes rescue muscle atrophy both in vivo and in vitro via miR-145-5p dependent manner. These results suggest that T-MSC exosomes have therapeutic potential to maintain or improve skeletal muscle mass in various activin A elevated pathologic conditions.


Subject(s)
Activin Receptors/metabolism , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Animals , Female , Mice , Mice, Inbred BALB C , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission
13.
Stem Cell Res Ther ; 12(1): 329, 2021 06 05.
Article in English | MEDLINE | ID: mdl-34090520

ABSTRACT

BACKGROUND: Co-transplantation of bone marrow cells (BMCs) and mesenchymal stem cells (MSCs) is used as a strategy to improve the outcomes of bone marrow transplantation. Tonsil-derived MSCs (TMSCs) are a promising source of MSCs for co-transplantation. Previous studies have shown that TMSCs or conditioned media from TMSCs (TMSC-CM) enhance BMC engraftment. However, the factors in TMSCs that promote better engraftment have not yet been identified. METHODS: Mice were subjected to a myeloablative regimen of busulfan and cyclophosphamide, and the mRNA expression in the bone marrow was analyzed using an extracellular matrix (ECM) and adhesion molecule-targeted polymerase chain reaction (PCR) array. Nano-liquid chromatography with tandem mass spectrometry, real-time quantitative PCR, western blots, and enzyme-linked immunosorbent assays were used to compare the expression levels of metalloproteinase 3 (MMP3) in MSCs derived from various tissues, including the tonsils, bone marrow, adipose tissue, and umbilical cord. Recipient mice were conditioned with busulfan and cyclophosphamide, and BMCs, either as a sole population or with control or MMP3-knockdown TMSCs, were co-transplanted into these mice. The effects of TMSC-expressed MMP3 were investigated. Additionally, Enzchek collagenase and Transwell migration assays were used to confirm that the collagenase activity of TMSC-expressed MMP3 enhanced BMC migration. RESULTS: Mice subjected to the myeloablative regimen exhibited increased mRNA expression of collagen type IV alpha 1/2 (Col4a1 and Col4a2). Among the various extracellular matrix-modulating proteins secreted by TMSCs, MMP3 was expressed at higher levels in TMSCs than in other MSCs. Mice co-transplanted with BMCs and control TMSCs exhibited a higher survival rate, weight recovery, and bone marrow cellularity compared with mice co-transplanted with BMCs and MMP3-knockdown TMSCs. Control TMSC-CM possessed higher collagenase activity against collagen IV than MMP3-knockdown TMSC-CM. TMSC-CM also accelerated BMC migration by degrading collagen IV in vitro. CONCLUSIONS: Collectively, these results indicate that TMSCs enhance BMC engraftment by the secretion of MMP3 for the modulation of the bone marrow extracellular matrix.


Subject(s)
Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Bone Marrow , Bone Marrow Cells , Collagen Type IV , Mice , Palatine Tonsil
14.
Int J Mol Sci ; 22(5)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800208

ABSTRACT

(1) Background: six mammalian ceramide synthases (CerS1-6) determine the acyl chain length of sphingolipids (SLs). Although ceramide levels are increased in murine allergic asthma models and in asthmatic patients, the precise role of SLs with specific chain lengths is still unclear. The role of CerS2, which mainly synthesizes C22-C24 ceramides, was investigated in immune responses elicited by airway inflammation using CerS2 null mice. (2) Methods: asthma was induced in wild type (WT) and CerS2 null mice with ovalbumin (OVA), and inflammatory cytokines and CD4 (cluster of differentiation 4)+ T helper (Th) cell profiles were analyzed. We also compared the functional capacity of CD4+ T cells isolated from WT and CerS2 null mice. (3) Results: CerS2 null mice exhibited milder symptoms and lower Th2 responses than WT mice after OVA exposure. CerS2 null CD4+ T cells showed impaired Th2 and increased Th17 responses with concomitant higher T cell receptor (TCR) signal strength after TCR stimulation. Notably, increased Th17 responses of CerS2 null CD4+ T cells appeared only in TCR-mediated, but not in TCR-independent, treatment. (4) Conclusions: altered Th2/Th17 immune response with higher TCR signal strength was observed in CerS2 null CD4+ T cells upon TCR stimulation. CerS2 and very-long chain SLs may be therapeutic targets for Th2-related diseases such as asthma.


Subject(s)
Asthma/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , Sphingosine N-Acyltransferase/deficiency , Th17 Cells/immunology , Th2 Cells/immunology , Animals , Asthma/chemically induced , Asthma/genetics , Asthma/pathology , Mice , Mice, Knockout , Ovalbumin/toxicity , Receptors, Antigen, T-Cell/genetics , Signal Transduction/genetics , Sphingosine N-Acyltransferase/immunology , Th17 Cells/pathology , Th2 Cells/pathology
16.
PLoS One ; 15(11): e0242057, 2020.
Article in English | MEDLINE | ID: mdl-33175885

ABSTRACT

Exosomes are a group of small membranous vesicles that are shed into the extracellular environment by tumoral or non-tumoral cells and contribute to cellular communication by delivering micro RNAs (miRNAs). In this study, we aimed to evaluate the role of exosomal miRNAs from colorectal cancer cell lines in tumorigenesis, by affecting cancer-associated fibroblasts (CAFs), which are vital constituents of the tumor microenvironment. To analyze the effect of exosomal miRNA on the tumor microenvironment, migration of the monocytic cell line THP-1 was evaluated via Transwell migration assay using CAFs isolated from colon cancer patients. The migration assay was performed with CAFs ± CCL7-blocking antibody and CAFs that were treated with exosomes isolated from colon cancer cell lines. To identify the associated exosomal miRNAs, miRNA sequencing and quantitative reverse transcription polymerase chain reaction were performed. The migration assay revealed that THP-1 migration was decreased in CCL7-blocking antibody-expressing and exosome-treated CAFs. Colon cancer cell lines contained miRNA let-7d in secreted exosomes targeting the chemokine CCL7. Exosomes from colorectal cancer cell lines affected CCL7 secretion from CAFs, possibly via the miRNA let-7d, and interfered with the migration of CCR2+ monocytic THP-1 cells in vitro.


Subject(s)
Colorectal Neoplasms/genetics , Exosomes/genetics , MicroRNAs/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , HT29 Cells , Humans , Jurkat Cells , Sequence Analysis, RNA , THP-1 Cells , Tumor Microenvironment
17.
Int J Mol Med ; 46(3): 1166-1174, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32582998

ABSTRACT

Bone marrow (BM) transplantation (BMT) represents a curative treatment for various hematological disorders. Prior to BMT, a large amount of the relevant anticancer drug needed to be administered to eliminate cancer cells. However, during this pre­BMT cytotoxic conditioning regimen, hematopoietic stem cells in the BM and thymic epithelial cells were also destroyed. The T cell receptor (TCR) recognizes diverse pathogen, tumor and environmental antigens, and confers immunological memory and self­tolerance. Delayed thymus reconstitution following pre­BMT cytotoxic conditioning impedes de novo thymopoiesis and limits T cell­mediated immunity. Several cytokines, such as RANK ligand, interleukin (IL)­7, IL­22 and stem cell factor, were recently reported to improve thymopoiesis and immune function following BMT. In the present study, it was found that the co­transplantation of tonsil­derived mesenchymal stromal cells (T­MSCs) with BM­derived cells (BMCs) accelerated the recovery of involuted thymuses in mice following partial pre­BMT conditioning with busulfan­cyclophosphamide treatment, possibly by inducing FMS­like tyrosine kinase 3 ligand (FLT3L) and fibroblast growth factor 7 (FGF7) production in T­MSCs. The co­transplantation of T­MSCs with BMCs also replenished the CD3+ cell population by inhibiting thymocyte apoptosis following pre­BMT cytotoxic conditioning. Furthermore, T­MSC co­transplantation improved the recovery of the TCR repertoire and led to increased thymus­generated T cell diversity.


Subject(s)
Bone Marrow Transplantation/methods , Mesenchymal Stem Cells/cytology , Palatine Tonsil/cytology , T-Lymphocytes/cytology , Thymus Gland/cytology , Animals , CD3 Complex , Female , Immunohistochemistry , In Situ Nick-End Labeling , Male , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Palatine Tonsil/metabolism , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/metabolism
18.
PLoS One ; 15(5): e0233448, 2020.
Article in English | MEDLINE | ID: mdl-32437407

ABSTRACT

Skin forms a physical barrier that protects the body against outside agents. The deepest layer of the skin, the stratum basale, contains two cell types: agent-sensing keratinocytes, and melanin-producing melanocytes. Keratinocytes can sense both harmless commensal organisms and harmful pathogens via Toll-like receptors (TLRs), and keratinocytes subsequently drive immune responses. Activation of TLR3 is required for barrier repair because it stimulates essential genes, including tight junction genes, and inflammatory cytokines. Within the basal layer of the skin, resident melanocytes use their dendritic processes to connect with approximately 30-40 neighboring keratinocytes. Most studies have focused on the transfer of melanin-synthesizing melanosomes from melanocytes to keratinocytes, but the potential regulation of melanogenesis by soluble factor(s) produced by keratinocytes remains to be explored. Studying such regulation in vivo is challenging because of the keratinocyte:melanocyte ratio in the epidermis and the location of the cells within the skin. Therefore, in this study, we investigated whether keratinocytes affected melanocyte melanogenesis in vitro under normal or inflammatory conditions. We found that polyinosinic-polycytidylic acid [poly(I:C)] stimulation induced PD-L1 secretion from HaCaT cells and that poly(I:C)-induced PD-L1 inhibited melanin production by B16F10 cells. These data provide key evidence that keratinocytes can alter melanocyte melanogenesis via the production of soluble factors under inflammatory conditions.


Subject(s)
B7-H1 Antigen/metabolism , Keratinocytes/metabolism , Melanins/metabolism , Melanocytes/metabolism , Poly I-C/pharmacology , Animals , Cell Line , Humans , Mice
19.
Biochem Biophys Res Commun ; 525(3): 786-792, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32147097

ABSTRACT

Lymphatic vessels serve as conduits through which immune cells traffic. Because lymphatic vessels are also involved in lipid transport, their function is vulnerable to abnormal metabolic conditions such as obesity and hyperlipidemia. Exactly how these conditions impact immune cell trafficking, however, is not well understood. Here, we found higher numbers of LYVE-1-positive lymphatic endothelial cells and CD3-positive T cells in the lymph nodes of mice fed high-cholesterol or high-fat diets compared with those of mice fed a normal chow diet. To confirm the effect of fat content on immune cell trafficking, the lymphatic endothelial SVEC4-10 cell line was treated with palmitic acid at a 100 µM concentration. After 24 h, palmitic acid-treated cells exhibited increased expression of podoplanin and vascular growth-associated molecules (VEGFC, VEGFD, VEGFR3, and NRP2) and enhanced tube formation. Microarray analysis showed an increase in pro-inflammatory cytokine and chemokine transcription after palmitic acid treatment. Finally, transwell migration assay confirmed that T cell line moved toward medium previously cultured with palmitic acid-treated SVEC4-10 cells. Together, our results suggest that hyperlipidemia drives lymphatic vessel remodeling and T cell migration toward lymphatic endothelial cells.


Subject(s)
Cell Movement , Endothelial Cells/pathology , Hyperlipidemias/immunology , Hyperlipidemias/pathology , Lymph Nodes/pathology , T-Lymphocytes/pathology , Animals , Cell Line , Cell Movement/drug effects , Chemokines/metabolism , Diet , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Heart Ventricles/drug effects , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hyperlipidemias/physiopathology , Male , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Palmitic Acid/toxicity , T-Lymphocytes/drug effects , Ventricular Remodeling/drug effects
20.
Cells ; 9(1)2020 01 15.
Article in English | MEDLINE | ID: mdl-31952360

ABSTRACT

Cotransplantation of mesenchymal stem cells (MSCs) with hematopoietic stem cells (HSCs) has been widely reported to promote HSC engraftment and enhance marrow stromal regeneration. The present study aimed to define whether MSC conditioned medium could recapitulate the effects of MSC cotransplantation. Mouse bone marrow (BM) was partially ablated by the administration of a busulfan and cyclophosphamide (Bu-Cy)-conditioning regimen in BALB/c recipient mice. BM cells (BMCs) isolated from C57BL/6 mice were transplanted via tail vein with or without tonsil-derived MSC conditioned medium (T-MSC CM). Histological analysis of femurs showed increased BM cellularity when T-MSC CM or recombinant human pleiotrophin (rhPTN), a cytokine readily secreted from T-MSCs with a function in hematopoiesis, was injected with BMCs. Microstructural impairment in mesenteric and BM arteriole endothelial cells (ECs) were observed after treatment with Bu-Cy-conditioning regimen; however, T-MSC CM or rhPTN treatment restored the defects. These effects by T-MSC CM were disrupted in the presence of an anti-PTN antibody, indicating that PTN is a key mediator of EC restoration and enhanced BM engraftment. In conclusion, T-MSC CM administration enhances BM engraftment, in part by restoring vasculature via PTN production. These findings highlight the potential therapeutic relevance of T-MSC CM for increasing HSC transplantation efficacy.


Subject(s)
Bone Marrow Transplantation , Carrier Proteins/pharmacology , Culture Media, Conditioned/pharmacology , Cytokines/pharmacology , Human Umbilical Vein Endothelial Cells/cytology , Mesenchymal Stem Cells/cytology , Palatine Tonsil/cytology , Animals , Cell Survival/drug effects , Endothelium/drug effects , Female , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Male , Mesenchymal Stem Cells/drug effects , Mesenteric Arteries/drug effects , Mice, Inbred BALB C , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...