Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38793854

ABSTRACT

The presented paper introduces a novel path planning algorithm designed for generating low-cost trajectories that fulfill mission requirements expressed in Linear Temporal Logic (LTL). The proposed algorithm is particularly effective in environments where cost functions encompass the entire configuration space. A core contribution of this paper is the presentation of a refined approach to sampling-based path planning algorithms that aligns with the specified mission objectives. This enhancement is achieved through a multi-layered framework approach, enabling a simplified discrete abstraction without relying on mesh decomposition. This abstraction is especially beneficial in complex or high-dimensional environments where mesh decomposition is challenging. The discrete abstraction effectively guides the sampling process, influencing the selection of vertices for extension and target points for steering in each iteration. To further improve efficiency, the algorithm incorporates a deep learning-based extension, utilizing training data to accurately model the optimal trajectory distribution between two points. The effectiveness of the proposed method is demonstrated through simulated tests, which highlight its ability to identify low-cost trajectories that meet specific mission criteria. Comparative analyses also confirm the superiority of the proposed method compared to existing methods.

2.
Materials (Basel) ; 17(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38255593

ABSTRACT

Dielectric ceramic capacitors are highly regarded for their rapid charge-discharge, high power density, and cyclability in various advanced applications. However, their relatively low energy storage density has prompted intensive research aiming at developing materials with a higher energy density. To enhance energy storage properties, research has focused on modifying ferroelectric materials to induce relaxor ferroelectricity. The present study aims to induce a superparaelectric (SPE) state in relaxor ferroelectrics near room temperature by altering BaTiO3 ferroelectric ceramics using the (Sr,Bi)TiO3-Bi(Mg0.5Ti0.5)O3 system ((1-x)BT-x(SBT-BMT)). X-ray diffraction and Raman spectroscopy analysis demonstrated a shift in the crystal structure from tetragonal to cubic with an increasing x content. Notably, the compositions (except x = 0.1) satisfied the criteria for the SPE state manifestation near room temperature. The x = 0.2 specimen displayed characteristics at the boundary between the relaxor ferroelectric and SPE phases, while x ≥ 0.3 specimens exhibited increased SPE state fractions. Despite reduced maximum polarization, x ≥ 0.3 specimens showcased impressive energy storage capabilities, attributed to the enhanced SPE state, especially for x = 0.3, with impressive characteristics: a recoverable energy density (Wrec) of ~1.12 J/cm3 and efficiency (η) of ~94% at 170 kV/cm applied field. The good stability after the charge-discharge cycles reinforces the significance of the SPE phase in augmenting energy storage in relaxor ferroelectric materials, suggesting potential applications in high-energy density storage devices.

3.
Small Methods ; : e2300969, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095424

ABSTRACT

The surface treatment for a polymer-ceramic composite is additionally performed in advanced material industries. To prepare the composite without a surface treatment, the simplest way to manufacture an advanced ceramic-particle is devised. The method is the formation of a nanocrystalline composite layer through the simple liquid-phase sintering. Using magnesia (MgO) which shows hydrophilicity, a nanocrystalline surface layer is realized by liquid-phase sintering. The amorphous matrix of nanocrystalline composite layer makes MgO hydrophobic and ensures miscibility with polymers, and the nanocrystalline MgO ensures high thermal conductivity. In addition, the liquid phase removes the open pores and makes the surface morphology smooth MgO with smooth surface (MgO-SM). Thermal interface materials (TIM) prepared with MgO-SM and epoxy show a high thermal conductivity of ≈7.5 W m-1 K-1 , which is significantly higher than 4.5 W m-1 K-1 of pure MgO TIM. Consequently, the formation process of a nanocrystalline surface layer utilizing simple liquid-phase sintering is proposed as a fabrication method for a next-generation ceramic-filler. In addition, it is fundamentally identified that the thermal conductivity of MgO depends on the Mg deficiency, and therefore a poly-crystal MgO-SM (produced at a low temperature) has a higher thermal conductivity than a single-crystal MgO (produced at a high temperature).

4.
PLoS One ; 18(2): e0278993, 2023.
Article in English | MEDLINE | ID: mdl-36821598

ABSTRACT

BACKGROUND AND OBJECTIVES: To compare the long-term clinical outcomes of dual antiplatelet therapy (DAPT) with clopidogrel and DAPT with ticagrelor or prasugrel in patients with acute myocardial infarction (AMI) who underwent coronary intervention. METHODS: Between November 2011 and December 2015, a total of 13,104 patients with AMI were enrolled in the Korea Acute Myocardial Infarction Registry-National Institutes of Health (KAMIR-NIH) registry. Among them, 4,696 patients who received DAPT for more than 24 months were categorized into two groups: the clopidogrel group (n = 4,053) and ticagrelor or prasugrel group (n = 643). Propensity score matching (PSM) was used to reduce the bias due to confounding variables. Following PSM, the impacts of P2Y12 inhibitors on the clinical outcomes in both groups were compared during a 36-month clinical follow-up period. RESULTS: There were no significant differences in clinical outcomes in terms of cardiac death (7.1% vs. 9.7%, p = 0.101), stroke (1.4% vs. 1.0%, p = 0.436), major bleeding (0.5% vs. 0.8%, p = 0.478), major adverse cardiac events (MACE) (21.6% vs. 20.5%, p = 0.626), and net adverse cardiac event (NACE) (22.1% vs. 21.3%, p = 0.731) between the groups. The ticagrelor or prasugrel group had a lower incidence of recurrent percutaneous coronary intervention (PCI) (12.2% vs. 7.6%, p = 0.006) than the clopidogrel group. However, no differences were observed in the cumulative incidences of 3-year NACE between the ticagrelor or prasugrel and clopidogrel groups. CONCLUSIONS: Cumulative incidences of long-term NACE did not differ between the two groups. Therefore, the type and duration of DAPT should be customized for each patient with AMI.


Subject(s)
Acute Coronary Syndrome , Myocardial Infarction , Percutaneous Coronary Intervention , Humans , Acute Coronary Syndrome/drug therapy , Clopidogrel/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Infarction/surgery , Percutaneous Coronary Intervention/adverse effects , Platelet Aggregation Inhibitors/adverse effects , Prasugrel Hydrochloride/therapeutic use , Purinergic P2Y Receptor Antagonists/therapeutic use , Ticagrelor/therapeutic use , Treatment Outcome
5.
Adv Sci (Weinh) ; 10(3): e2205179, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36442861

ABSTRACT

An innovative autonomous resonance-tuning (ART) energy harvester is reported that utilizes adaptive clamping systems driven by intrinsic mechanical mechanisms without outsourcing additional energy. The adaptive clamping system modulates the natural frequency of the harvester's main beam (MB) by adjusting the clamping position of the MB. The pulling force induced by the resonance vibration of the tuning beam (TB) provides the driving force for operating the adaptive clamp. The ART mechanism is possible by matching the natural frequencies of the TB and clamped MB. Detailed evaluations are conducted on the optimization of the adaptive clamp tolerance and TB design to increase the pulling force. The energy harvester exhibits an ultrawide resonance bandwidth of over 30 Hz in the commonly accessible low vibration frequency range (<100 Hz) owing to the ART function. The practical feasibility is demonstrated by evaluating the ART performance under both frequency and acceleration-variant conditions and powering a location tracking sensor.

6.
Materials (Basel) ; 15(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35407689

ABSTRACT

This study investigated the causes of microstructural changes and the resultant electrical properties according to the sintering temperature of 0.96(K0.46-xNa0.54-x)Nb0.95Sb0.05O3-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 lead-free ceramics by analyzing the correlation between vacancy concentrations and 2D nucleation. When sintered for 4 h, no grain growth occurred for the x = 0.000 composition over a wide temperature range, demonstrating that the existence of initial vacancies is essential for grain growth. As x increased, that is, as the vacancy concentration increased, the critical driving force (ΔGC) for 2D nucleation decreased, and abnormal grain growth was promoted. The number and size of these abnormal grains increased as the sintering temperature increased, but at sintering temperatures above 1100 °C, they decreased again owing to a large drop in ΔGC. The x = 0.005 specimen sintered at 1085 °C exhibited excellent piezoelectric properties of d33 = 498 pC/N and kp = 0.45 due to the large number of large abnormal grains with an 83% tetragonal phase fraction. The x = 0.000 specimen sintered at 1130 °C with suppressed grain growth exhibited good energy storage properties because of its very high relative density and small grain size of 300 to 400 nm.

7.
Materials (Basel) ; 14(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34885340

ABSTRACT

Dielectric capacitors have been widely studied because their electrostatic storage capacity is enormous, and they can deliver the stored energy in a very short time. Relaxor ferroelectrics-based dielectric capacitors have gained tremendous importance for the efficient storage of electrical energy. Relaxor ferroelectrics possess low dielectric loss, low remanent polarization, high saturation polarization, and high breakdown strength, which are the main parameters for energy storage. This article focuses on a timely review of the energy storage performance of BiFeO3-based relaxor ferroelectrics in bulk ceramics, multilayers, and thin film forms. The article begins with a general introduction to various energy storage systems and the need for dielectric capacitors as energy storage devices. This is followed by a brief discussion on the mechanism of energy storage in capacitors, ferroelectrics, anti-ferroelectrics, and relaxor ferroelectrics as potential candidates for energy storage. The remainder of this article is devoted to reviewing the energy storage performance of bulk ceramics, multilayers, and thin films of BiFeO3-based relaxor ferroelectrics, along with a discussion of strategies to address some of the issues associated with their application as energy storage systems.

8.
Sensors (Basel) ; 20(22)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228129

ABSTRACT

In this study, composite devices were fabricated using ferromagnetic FeSiB-based alloys (Metglas) and ferroelectric ceramics, and their magnetic field sensitivity was evaluated. Sintered 0.95Pb(Zr0.52Ti0.48)O3-0.05Pb(Mn1/3Sb2/3)O3 (PZT-PMS) ceramic exhibited a very dense microstructure with a large piezoelectric voltage coefficient (g31 = -16.8 × 10-3 VmN-1) and mechanical quality factor (Qm > 1600). Owing to these excellent electromechanical properties of the PZT-PMS, the laminate composite with a Metglas/PZT-PMS/Metglas sandwich structure exhibited large magnetoelectric voltage coefficients (αME) in both off-resonance and resonance modes. When the length-to-width aspect ratio (l/w) of the composite was controlled, αME slightly varied in the off-resonance mode, resulting in similar sensitivity values ranging from 129.9 to 146.81 VT-1. Whereas in the resonance mode, the composite with small l/w exhibited a large reduction of αME and sensitivity values. When controlling the thickness of the PZT-PMS (t), the αME of the composite showed the largest value when t was the smallest in the off-resonance mode, while αME was the largest when t is the largest in the resonance mode. The control of t slightly affected the sensitivity in the off-resonance mode, however, higher sensitivity was obtained as t increased in the resonance mode. The results demonstrate that the sensitivity, varying with the dimensional control of the composite, is related to the mechanical loss of the sensor. The composite sensor with the PZT-PMS layer exhibited excellent magnetic field sensitivity of 1.49 × 105 VT-1 with a sub-nT sensing limit, indicating its potential for application in high-performance magnetoelectric sensor devices.

9.
Sensors (Basel) ; 20(11)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32492946

ABSTRACT

Recent advances in lithography technology and the spread of 3D printers allow us a facile fabrication of special materials with complicated microstructures. The materials are called "designed materials" or "architectured materials" and provide new opportunities for material development. These materials, which owing to their rationally designed architectures exhibit unusual properties at the micro- and nano-scales, are being widely exploited in the development of modern materials with customized and improved performance. Meta-materials are found to possess superior and unusual properties as regards static modulus (axial stress divided by axial strain), density, energy absorption, smart functionality, and negative Poisson's ratio (NPR). However, in spite of recent developments, it has only been feasible to fabricate a few such meta-materials and to implement them in practical applications. Against such a backdrop, a broad review of the wide range of cellular auxetic structures for mechanical metamaterials available at our disposal and their potential application areas is important. Classified according to their geometrical configuration, this paper provides a review of cellular auxetic structures. The structures are presented with a view to tap into their potential abilities and leverage multidimensional fabrication advances to facilitate their application in industry. In this review, there is a special emphasis on state-of-the-art applications of these structures in important domains such as sensors and actuators, the medical industry, and defense while touching upon ways to accelerate the material development process.

10.
Food Sci Biotechnol ; 29(4): 531-537, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32296564

ABSTRACT

The objective of this study was to evaluate the effect of yellow mealworm (Tenebrio molitor L.) exuviae (ME) given as a prebiotic in 20% of the diet fed to BALB/c mice. Analysis of the ME revealed that it was mostly composed of crude protein (52.94%), crude fiber (10.70%), and moisture (10.54%). When ME was fed to mice for 8 weeks, the number of intestinal lactic acid bacteria increased, reaching similar numbers (4.50 ± 0.80 CFU/mL) to those (4.70 ± 0.80 CFU/mL) of the control group not fed ME. Microbiome analysis showed that 8 weeks feeding of ME promoted the growth of Bifidobacteriaceae and Lactobacillaceae compared to the POS group, indicating the positive effects of feeding 20% ME on the intestinal microbiota of mice. These results suggest that ME can be considered as a dietary prebiotics to improve human gut microbial population, but further application study to human is necessary.

11.
J Nanosci Nanotechnol ; 12(4): 3355-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22849123

ABSTRACT

This paper describes the fabrication of pentacene thin-film transistors (TFTs) with an organic/inorganic hybrid gate dielectric, consisting of cross-linked poly(4-vinylphenol) (PVP) and Bi5Nb3O15. A 300-nm-thick Bi5Nb3O15 dielectric film, grown at room temperature, exhibits a high dielectric constant (high-k) value of 40 but has an undesirable interface with organic semiconductors (OSC). To form better interfaces with OSC, a cross-linked PVP dielectric was stacked on the Bi5Nb3O15 dielectric. It is shown that, with the introduction of a hybrid dielectric, our devices not only can be operated at a low voltage (- -5 V) but also have improved electrical characteristics and photoresponse, including a field-effect mobility of 0.72 cm2/V x s, current sub-threshold slopes of 0.29 V/decade, and a photoresponse of 4.84 at a gate bias V(G) = 0 V under 100 mW/cm2 AM 1.5 illumination.

12.
Langmuir ; 25(20): 12349-54, 2009 Oct 20.
Article in English | MEDLINE | ID: mdl-19624140

ABSTRACT

The amorphous Bi(5)Nb(3)O(15) film grown at room temperature under an oxygen-plasma sputtering ambient (BNRT-O(2) film) has a hydrophobic surface with a surface energy of 35.6 mJ m(-2), which is close to that of the orthorhombic pentacene (38 mJ m(-2)), resulting in the formation of a good pentacene layer without the introduction of an additional polymer layer. This film was very flexible, maintaining a high capacitance of 145 nF cm(-2) during and after 10(5) bending cycles with a small curvature radius of 7.5 mm. This film was optically transparent. Furthermore, the flexible, pentacene-based, organic thin-film transistors (OTFTs) fabricated on the poly(ether sulfone) substrate at room temperature using a BNRT-O(2) film as a gate insulator exhibited a promising device performance with a high field effect mobility of 0.5 cm(2) V(-1) s(-1), an on/off current modulation of 10(5), and a small subthreshold slope of 0.2 V decade(-1) under a low operating voltage of -5 V. This device also maintained a high carrier mobility of 0.45 cm(2) V(-1 )s(-1) during the bending with a small curvature radius of 9 mm. Therefore, the BNRT-O(2) film is considered a promising material for the gate insulator of the flexible, pentacene-based OTFT.

SELECTION OF CITATIONS
SEARCH DETAIL
...