Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 34(37): 12560-7, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25209293

ABSTRACT

Non-neurogenic cell types, such as cortical astroglia and fibroblasts, can be directly converted into neurons by the overexpression of defined transcription factors. Normally, the cellular phenotype of such differentiated cells is remarkably stable and resists direct cell transdifferentiation. Here we show that the Ink4a/Arf (also known as Cdkn2a) locus is a developmental barrier to direct neuronal transdifferentiation induced by transcription factor overexpression. With serial passage in vitro, wild-type postnatal cortical astroglia become progressively resistant to Dlx2-induced neuronal transdifferentiation. In contrast, the neurogenic competence of Ink4a/Arf-deficient astroglia is both greatly increased and does not diminish through serial cell culture passage. Electrophysiological analysis further demonstrates the neuronal identity of cells induced from Ink4a/Arf-null astroglia, and short hairpin RNA-mediated acute knockdown of p16Ink4a and p19Arf p16(Ink4a) and p19(Arf) indicates that these gene products function postnatally as a barrier to cellular transdifferentiation. Finally, we found that mouse fibroblasts deficient for Ink4a/Arf also exhibit greatly enhanced transcription factor-induced neuronal induction. These data indicate that Ink4a/Arf is a potent barrier to direct neuronal transdifferentiation and further suggest that this locus functions normally in the progressive developmental restriction of postnatal astrocytes.


Subject(s)
Astrocytes/cytology , Astrocytes/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Neurons/cytology , Neurons/metabolism , Animals , Cell Differentiation/physiology , Cells, Cultured , Mice , Mice, Knockout , Neurogenesis/physiology
2.
Neurosurgery ; 75(4): 472-82; discussion 482, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24887289

ABSTRACT

BACKGROUND: Mixed lineage leukemia-1 (Mll1) epigenetically regulates gene expression patterns that specify cellular identity in both embryonic development and adult stem cell populations. In the adult mouse brain, multipotent neural stem cells (NSCs) in the subventricular zone generate new neurons throughout life, and Mll1 is required for this postnatal neurogenesis but not for glial cell differentiation. Analysis of Mll1-dependent transcription may identify neurogenic genes useful for the direct reprogramming of astrocytes into neurons. OBJECTIVE: To identify Mll1-dependent transcriptional modules and to determine whether genes in the neurogenic modules can be used to directly reprogram astrocytes into neurons. METHODS: We performed gene coexpression module analysis on microarray data from differentiating wild-type and Mll1-deleted subventricular zone NSCs. Key developmental regulators belonging to the neurogenic modules were overexpressed in Mll1-deleted cells and cultured cortical astrocytes, and cell phenotypes were analyzed by immunocytochemistry and electrophysiology. RESULTS: Transcriptional modules that correspond to neurogenesis were identified in wild-type NSCs. Modules related to astrocytes and oligodendrocytes were enriched in Mll1-deleted NSCs, consistent with their gliogenic potential. Overexpression of genes selected from the neurogenic modules enhanced the production of neurons from Mll1-deleted cells, and overexpression of Brn4 (Pou3f4) in nonneurogenic cortical astroglia induced their transdifferentiation into electrophysiologically active neurons. CONCLUSION: Our results demonstrate that Mll1 is required for the expression of neurogenic but not gliogenic transcriptional modules in a multipotent NSC population and further indicate that specific Mll1-dependent genes may be useful for direct reprogramming strategies.


Subject(s)
Astrocytes/physiology , Cell Transdifferentiation/physiology , Histone-Lysine N-Methyltransferase/physiology , Myeloid-Lymphoid Leukemia Protein/physiology , Nerve Tissue Proteins/physiology , Neural Stem Cells/physiology , Neurons/physiology , POU Domain Factors/physiology , Animals , Histone-Lysine N-Methyltransferase/deficiency , Mice , Microarray Analysis , Myeloid-Lymphoid Leukemia Protein/deficiency , Neurogenesis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...