Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2948, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37221217

ABSTRACT

Multielectron semiconductor quantum dots (QDs) provide a novel platform to study the Coulomb interaction-driven, spatially localized electron states of Wigner molecules (WMs). Although Wigner-molecularization has been confirmed by real-space imaging and coherent spectroscopy, the open system dynamics of the strongly correlated states with the environment are not yet well understood. Here, we demonstrate efficient control of spin transfer between an artificial three-electron WM and the nuclear environment in a GaAs double QD. A Landau-Zener sweep-based polarization sequence and low-lying anticrossings of spin multiplet states enabled by Wigner-molecularization are utilized. Combined with coherent control of spin states, we achieve control of magnitude, polarity, and site dependence of the nuclear field. We demonstrate that the same level of control cannot be achieved in the non-interacting regime. Thus, we confirm the spin structure of a WM, paving the way for active control of correlated electron states for application in mesoscopic environment engineering.

2.
Phys Rev Lett ; 129(4): 040501, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35939035

ABSTRACT

We report energy-selective tunneling readout-based Hamiltonian parameter estimation of a two-electron spin qubit in a GaAs quantum dot array. Optimization of readout fidelity enables a single-shot measurement time of 16 µs on average, with adaptive initialization and efficient qubit frequency estimation based on real-time Bayesian inference. For qubit operation in a frequency heralded mode, we observe a 40-fold increase in coherence time without resorting to dynamic nuclear polarization. We also demonstrate active frequency feedback with quantum oscillation visibility, single-shot measurement fidelity, and gate fidelity of 97.7%, 99%, and 99.6%, respectively, showcasing the improvements in the overall capabilities of GaAs-based spin qubits. By pushing the sensitivity of the energy-selective tunneling-based spin to charge conversion to the limit, the technique is useful for advanced quantum control protocols such as error mitigation schemes, where fast qubit parameter calibration with a large signal-to-noise ratio is crucial.

3.
Nat Commun ; 13(1): 1438, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35301324

ABSTRACT

Scanning probe microscopy techniques, such as atomic force microscopy and scanning tunnelling microscopy, are harnessed to image nanoscale structures with an exquisite resolution, which has been of significant value in a variety of areas of nanotechnology. These scanning probe techniques, however, are not generally suitable for high-throughput imaging, which has, from the outset, been a primary challenge. Traditional approaches to increasing the scalability have involved developing multiple probes for imaging, but complex probe design and electronics are required to carry out the detection method. Here, we report a probe-based imaging method that utilizes scalable cantilever-free elastomeric probe design and hierarchical measurement architecture, which readily reconstructs high-resolution and high-throughput topography images. In a single scan, we demonstrate imaging with a 100-tip array to obtain 100 images over a 1-mm2 area with 106 pixels in less than 10 min. The potential for large-scale tip integration and the advantage of a simple probe array suggest substantial promise for our approach to high-throughput imaging far beyond what is currently possible.


Subject(s)
Microscopy, Scanning Probe , Nanotechnology , Microscopy, Atomic Force/methods , Microscopy, Scanning Probe/methods , Microscopy, Scanning Tunneling , Nanotechnology/methods , Proteins
4.
Nano Lett ; 21(12): 4999-5005, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34109799

ABSTRACT

We report a single-shot-based projective readout of a semiconductor hybrid qubit formed by three electrons in a GaAs double quantum dot. Voltage-controlled adiabatic transitions between the qubit operations and readout conditions allow high-fidelity mapping of quantum states. We show that a large ratio both in relaxation time vs tunneling time (≈50) and singlet-triplet splitting vs thermal energy (≈20) allows energy-selective tunneling-based spin-to-charge conversion with a readout visibility of ≈92.6%. Combined with ac driving, we demonstrate high visibility coherent Rabi and Ramsey oscillations of a hybrid qubit in GaAs. Further, we discuss the generality of the method for use in other materials, including silicon.

SELECTION OF CITATIONS
SEARCH DETAIL