Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 6379141, 2022.
Article in English | MEDLINE | ID: mdl-36059413

ABSTRACT

This study proposes a new superior hybrid algorithm, which is the particle swarm optimization (PSO) and gene algorithm (GA)-based neural network to predict the leakage current of insulators. The developed algorithm was utilized for the online monitoring systems, which were completely installed on the 69 kV and 161 kV transmission towers in Taiwan. This hybrid algorithm utilizes the local meteorological data as input parameters combined with the extracted enhanced data: the percentage of spark discharge areas and the brightness change in the image of the discharge phenomenon. These data with a high correlation with the leakage current are utilized as input vectors to improve the accuracy and effectiveness of the developed hybrid model. The performance of the developed algorithm is compared with a traditional PSO-based neural network and backpropagation neural network (BPNN) to evaluate and analyze. The comparative simulation results prove the effectiveness of the combination of hybrid PSO-GA-based neural network and surface discharge data, which achieved a maximum improvement of 38.54% MSE, 10.62% MAPE, and 3.41% R square for 161 kV data and 39.28% MSE, 12.62% MAPE, and 1.61% R square for 69 kV data. Moreover, the data with enhanced inputs outperform the traditional data in most benchmark factors, improving the accuracy and effectiveness in defining the deteriorative insulators. The developed methodology with a noticeable improvement was utilized in the online monitoring system to reduce the operational and maintenance cost of transmission lines in Taiwan Power Company.


Subject(s)
Algorithms , Neural Networks, Computer , Computer Simulation , Taiwan
2.
Comput Intell Neurosci ; 2017: 4135465, 2017.
Article in English | MEDLINE | ID: mdl-28781591

ABSTRACT

Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classification accuracy. Further, a time-domain reflectometry (TDR) method with a pseudorandom binary sequence (PRBS) stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using Simulink software and MATLAB Toolbox. The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness and high efficiency of the developed method.


Subject(s)
Electric Power Supplies , Support Vector Machine , Electricity
SELECTION OF CITATIONS
SEARCH DETAIL