Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Neurosci ; 17: 1160435, 2024.
Article in English | MEDLINE | ID: mdl-38783903

ABSTRACT

The function of peripheral nociceptors, the neurons that relay pain signals to the brain, are frequently tuned by local and systemic modulator substances. In this context, neurohormonal effects are emerging as an important modulatory mechanism, but many aspects remain to be elucidated. Here we report that gonadotropin-releasing hormone (GnRH), a brain-specific neurohormone, can aggravate pain by acting on nociceptors in mice. GnRH and GnRHR, the receptor for GnRH, are expressed in a nociceptor subpopulation. Administration of GnRH and its analogue, localized for selectively affecting the peripheral neurons, deteriorated mechanical pain, which was reproducible in neuropathic conditions. Nociceptor function was promoted by GnRH treatment in vitro, which appears to involve specific sensory transient receptor potential ion channels. These data suggest that peripheral GnRH can positively modulate nociceptor activities in its receptor-specific manner, contributing to pain exacerbation. Our study indicates that GnRH plays an important role in neurohormonal pain modulation via a peripheral mechanism.

2.
Biomedicines ; 9(3)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807709

ABSTRACT

Modulation of the function of somatosensory neurons is an important analgesic strategy, requiring the proposal of novel molecular targets. Many G-protein-coupled receptors (GPRs) have been deorphanized, but the receptor locations, outcomes due to their activations, and their signal transductions remain to be elucidated, regarding the somatosensory nociceptor function. Here we report that GPR171, expressed in a nociceptor subpopulation, attenuated pain signals via Gi/o-coupled modulation of the activities of nociceptive ion channels when activated by its newly found ligands. Administration of its natural peptide ligand and a synthetic chemical ligand alleviated nociceptor-mediated acute pain aggravations and also relieved pathologic pain at nanomolar and micromolar ranges. This study suggests that functional alteration of the nociceptor neurons by GPR171 signaling results in pain alleviation and indicates that GPR171 is a promising molecular target for peripheral pain modulation.

3.
Mol Neurobiol ; 56(1): 444-453, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29707744

ABSTRACT

Biological effects of suberanilohydroxamic acid (SAHA) have mainly been observed in the context of tumor suppression via epigenetic mechanisms, but other potential outcomes from its use have also been proposed in different fields such as pain modulation. Here, we tried to understand whether SAHA modulates specific pain modalities by a non-epigenetic unknown mechanism. From 24 h Complete Freund's Adjuvant (CFA)-inflamed hind paws of mice, mechanical and thermal inflammatory pain indices were collected with or without immediate intraplantar injection of SAHA. To examine the action of SAHA on sensory receptor-specific pain, transient receptor potential (TRP) ion channel-mediated pain indices were collected in the same manner of intraplantar treatment. Activities of primarily cultured sensory neurons and heterologous cells transfected with TRP channels were monitored to determine the molecular mechanism underlying the pain-modulating effect of SAHA. As a result, immediate and localized pretreatment with SAHA, avoiding an epigenetic intervention, acutely attenuated mechanical inflammatory pain and receptor-specific pain evoked by injection of a TRP channel agonist in animal models. We show that a component of the mechanisms involves TRPV4 inhibition based on in vitro intracellular Ca2+ imaging and electrophysiological assessments with heterologous expression systems and cultured sensory neurons. Taken together, the present study provides evidence of a novel off-target action and its mechanism of SAHA in its modality-specific anti-nociceptive effect and suggests the utility of this compound for pharmacological modulation of pain.


Subject(s)
Analgesics/therapeutic use , Pain/drug therapy , Vorinostat/therapeutic use , Analgesics/pharmacology , Animals , Behavior, Animal/drug effects , Cells, Cultured , HEK293 Cells , Humans , Inflammation/drug therapy , Inflammation/pathology , Male , Mice, Inbred ICR , Nociception/drug effects , Pain/pathology , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , TRPV Cation Channels/metabolism , Vorinostat/chemistry , Vorinostat/pharmacology
5.
Mol Neurobiol ; 55(8): 6589-6600, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29327205

ABSTRACT

Pain is a protective mechanism that enables us to avoid potentially harmful environments. However, when pathologically persisted and aggravated under severely injured or inflamed conditions, pain often reduces the quality of life and thus is considered as a disease to eliminate. Inflammatory and/or neuropathic mechanisms may exaggerate interactions between damaged tissues and neural pathways for pain mediation. Similar mechanisms also promote the communication among cellular participants in synapses at spinal or higher levels, which may amplify nociceptive firing and subsequent signal transmission, deteriorating the pain sensation. In this pathology, important cellular players are afferent sensory neurons, peripheral immune cells, and spinal glial cells. Arising from damage of injury, overloaded interstitial and intracellular reactive oxygen species (ROS) and intracellular Ca2+ are key messengers in the development and maintenance of pathologic pain. Thus, an ROS-sensitive and Ca2+-permeable ion channel that is highly expressed in the participant cells might play a critical role in the pathogenesis. Transient receptor potential melastatin subtype 2 (TRPM2) is the unique molecule that satisfies all of the requirements: the sensitivity, permeability, and its expressing cells. Notable progress in delineating the role of TRPM2 in pain has been achieved during the past decade. In the present review, we summarize the important findings in the key cellular components that are involved in pathologic pain. This overview will help to understand TRPM2-mediated pain mechanisms and speculate therapeutic strategies by utilizing this updated information.


Subject(s)
Nociception , Pain/metabolism , TRPM Cation Channels/metabolism , Animals , Humans , Inflammation/pathology , Neurons/metabolism , Neurons/pathology , Oxidative Stress
6.
Korean J Physiol Pharmacol ; 20(5): 525-31, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27610039

ABSTRACT

The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying K(+) current. In this study, we examined whether a µ-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain K(+) channel (K2P) current in rat SG neurons using a slice whole-cell patch clamp technique. Also we confirmed which subtypes of K2P channels were associated with DAMGO-induced currents, measuring the expression of K2P channel in whole spinal cord and SG region. DAMGO caused a robust hyperpolarization and outward current in the SG neurons, which developed almost instantaneously and did not show any time-dependent inactivation. Half of the SG neurons exhibited a linear I~V relationship of the DAMGO-induced current, whereas rest of the neurons displayed inward rectification. In SG neurons with a linear I~V relationship of DAMGO-induced current, the reversal potential was close to the K(+) equilibrium potentials. The mRNA expression of TWIK (tandem of pore domains in a weak inwardly rectifying K(+) channel) related acid-sensitive K(+) channel (TASK) 1 and 3 was found in the SG region and a low pH (6.4) significantly blocked the DAMGO-induced K(+) current. Taken together, the DAMGO-induced hyperpolarization at resting membrane potential and subsequent decrease in excitability of SG neurons can be carried by the two-pore domain K(+) channel (TASK1 and 3) in addition to inwardly rectifying K(+) channel.

7.
Biochem Biophys Res Commun ; 465(4): 832-7, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26319554

ABSTRACT

TRPV1, a ligand-gated ion channel expressed in nociceptive sensory neurons is modulated by a variety of intracellular signaling pathways. Dopamine is a neurotransmitter that plays important roles in motor control, cognition, and pain modulation in the CNS, and acts via a variety of dopamine receptors (D1R-D5R), a class of GPCRs. Although nociceptive sensory neurons express D1-like receptors, very little is known about the effect of dopamine on TRPV1 in the peripheral nervous system. Therefore, in this study, we examined the effects of D1R activation on TRPV1 in mouse DRG neurons using Ca(2+) imaging and immunohistochemical analysis. The D1R agonist SKF-38393 induced reproducible Ca(2+) responses via Ca(2+) influx through TRPV1 rather than Ca(2+) mobilization from intracellular Ca(2+) stores. Immunohistochemical analysis revealed co-expression of D1R and TRPV1 in mouse DRG neurons. The PLC-specific inhibitor blocked the SKF-38393-induced Ca(2+) response, whereas the PKC, DAG lipase, AC, and PKA inhibitors had no effect on the SKF-38393-induced Ca(2+) response. Taken together, our results suggest that the SKF-38393-induced Ca(2+) response results from the direct activation of TRPV1 by a PLC/DAG-mediated membrane-delimited pathway. These results provide evidence that the trans-activation of TRPV1 following D1R activation may contribute to the modulation of pain signaling in nociceptive sensory neurons.


Subject(s)
Ganglia, Spinal/metabolism , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Animals , Calcium Signaling/drug effects , Diglycerides/metabolism , Ganglia, Spinal/cytology , Ganglia, Spinal/drug effects , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Nociceptors/drug effects , Nociceptors/metabolism , Receptors, Dopamine D1/agonists , Signal Transduction/drug effects , Transcriptional Activation/drug effects , Type C Phospholipases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...