Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38251164

ABSTRACT

A synaptic device with a multilayer structure is proposed to reduce the operating power of neuromorphic computing systems while maintaining a high-density integration. A simple metal-insulator-metal (MIM)-structured multilayer synaptic device is developed using an 8-inch wafer-based and complementary metal-oxide-semiconductor (CMOS) fabrication process. The three types of MIM-structured synaptic devices are compared to assess their effects on reducing the operating power. The obtained results exhibited low-power operation owing to the inserted layers acting as an internal resistor. The modulated operational conductance level and simple MIM structure demonstrate the feasibility of implementing both low-power operation and high-density integration in multilayer synaptic devices.

2.
Sci Rep ; 13(1): 14325, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37652919

ABSTRACT

Three-terminal (3T) structured electrochemical random access memory (ECRAM) has been proposed as a synaptic device based on improved synaptic characteristics. However, the proposed 3T ECRAM has a larger area requirement than 2T synaptic devices; thereby limiting integration density. To overcome this limitation, this study presents the development of a high-density vertical structure for the 3T ECRAM. In addition, complementary metal-oxide semiconductor (CMOS)-compatible materials and 8-inch wafer-based CMOS fabrication processes were utilized to verify the feasibility of mass production. The achievements of this work demonstrate the potential for high-density integration and mass production of 3T ECRAM devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...