Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(37): eabp8751, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36103528

ABSTRACT

Single-ion conductors have garnered attention in energy storage systems as a promising alternative to currently widespread electrolytes that allow migration of cations and anions. However, ion transport phenomena of most single-ion conductors are affected by strong ion (e.g., Li+)-ion (immobilized anionic domains) interactions and tortuous paths, which pose an obstacle to achieving performance breakthroughs. Here, we present a Li+-centered G-quadruplex (LiGQ) as a class of single-ion conductor based on directional Li+ slippage at the microscopic level. A guanine derivative with liquid crystalline moieties is self-assembled to form a hexagonal ordered columnar structure in the LiGQ, thereby yielding one-dimensional central channels that provide weak ion-dipole interaction and straightforward ionic pathways. The LiGQ exhibits weak Li+ binding energy and low activation energy for ion conduction, verifying its viability as a new electrolyte design.

2.
Nat Commun ; 13(1): 2541, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35534482

ABSTRACT

Lithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi0.8Co0.1Mn0.1O2 active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm-2 is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg-1 and 772 Wh L-1 (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm-2) and 25 °C.

3.
ChemSusChem ; 15(4): e202102201, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-34929057

ABSTRACT

Inspired by the atomic-sized, shape-regulated features of G-quadruplexes comprising guanine motifs with a monovalent metal cation, the G-quadruplex-forming ability, and properties of a guanine-based π-conjugated Y2 molecule containing bithiophene and peripheral dodecyl chain units in the presence of various cation salts (Li+ , Na+ , K+ , and Mg2+ ) were exploited. A series of structural characterization revealed that Y2 yielded desirable G-quadruplexes with all the tested cations as a consequence of the combination of a hydrogen-bonded cyclic G-quartet, π-stacking, and cation-dipole interactions. The radius and nature of the coordinating cations crucially affected the structural characteristics of G-quadruplexes, leading to variations in the ion migration ability inside the cavity of the G-quadruplex (Li+ >Na+ >K+ >Mg2+ ), as characterized through theoretical and experimental investigations. These results not only improve the understanding of G-quadruplex self-assemblies based on guanine but also provide an impetus for their diverse potential applications, especially in the field of Li batteries.


Subject(s)
G-Quadruplexes , Cations/chemistry , Cations, Monovalent/chemistry , Guanine/chemistry , Ions , Sodium/chemistry
4.
Nano Lett ; 19(9): 5879-5884, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31141382

ABSTRACT

Lithium (Li) metal has garnered considerable attention in next-generation battery anodes. However, its environmental vulnerability, along with the electrochemical instability and safety failures, poses a formidable challenge to commercial use. Here, we describe a new class of antioxidative Li reservoir based on interstitial channels of single-walled carbon nanotube (SWCNT) bundles. The Li preferentially confined in the interstitial channels exhibits unusual thermodynamic stability and exceptional capacity even after exposure to harsh environmental conditions, thereby enabling us to propose a new lithiation/delithiation mechanism in carbon nanotubes. To explore practical application of this approach, the Li confined in the SWCNT bundles is electrochemically extracted and subsequently plated on a copper foil. The resulting Li-plated copper foil shows reliable charge/discharge behavior comparable to those of pristine Li foils. Benefiting from the confinement effect of the interstitial channels, the SWCNT bundles hold great promise as an environmentally tolerant, high-capacity Li reservoir.

SELECTION OF CITATIONS
SEARCH DETAIL
...