Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci Technol ; 65(3): 535-549, 2023 May.
Article in English | MEDLINE | ID: mdl-37332281

ABSTRACT

This study was to investigate the effects of different phytogenic feed additives (PFA) dosage levels in growing- finishing pigs stressed by high stocking density. A total of 72 mix sexed 12 weeks growing pigs ([Landrace × Yorkshire] × Duroc) with initial body weight (BW) of 49.28 ± 4.58 kg were used for 8 weeks. There were 3 replicate pens in each treatment group, with 3 pigs per pen. The dietary treatment groups consisted of basal diets in animal welfare density (negative control [NC]), basal diet in high stocking density (positive control [PC]), PC + 0.04% essential oil (ES1), PC + 0.08% essential oil (ES2), PC + 0.10% bitter citrus extract & essential oil (CES1), PC + 0.20% bitter citrus extract & essential oil (CES2), PC + 0.05% grape pomace extract (GP1), PC + 0.10% grape pomace extract (GP2). The reduction of space allowance decreased (p < 0.05) average daily gain, feed efficiency, and digestibility of dry matter, crude protein, and gross energy. Also, the fecal score of PC groups increased (p < 0.05) compared with other groups. Basic behaviors (feed intake, standing, lying) were inactive (p < 0.05) and singularity behavior (biting) was increased (p < 0.10) under high stocking density. There was no difference in blood profile. However, the supplementation of PFA alleviated the negative effects such as reduced growth performance, nutrient digestibility, and some increasing stress indicators in th blood (cortisol) and animal behavior (biting). In conclusion, the negative effect of high stocking density was most effectively mitigated by the normal dosage of the mixture of bitter citrus extract and essential oil additive (CES1).

2.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37167436

ABSTRACT

This study was conducted to investigate the effects of supplementing different ratios of phytogenic feed additives (PFA) to weaned pigs challenged with pathogenic Escherichia coli on growth performance, nutrient digestibility, intestinal barrier integrity, and immune response, and to determine the optimal mixing ratio for post-weaning diarrhea (PWD) prevention. A total of 48 4-wk-old weaned pigs with initial body weight of 8.01 ± 0.39 kg were placed in individual metabolic cages, and then randomly assigned to eight treatment groups. The eight treatments were as follows: a basal diet without E. coli challenge (negative control, NC), a basal diet with E. coli challenge (positive control, PC), PC with supplementing 0.1% mixture of 20% bitter citrus extract (BCE), 10% microencapsulated blend of thymol and carvacrol (MEO), and 70% excipient (T1), PC with supplementing 0.1% mixture of 10% MEO, 20% premixture of grape seed and grape marc extract, green tea, and hops (PGE), and 60% excipient (T2), PC with supplementing 0.1% mixture of 10% BCE, 10% MEO, 10% PGE, and 70% excipient (T3), PC with supplementing 0.1% mixture of 20% BCE, 20% MEO, and 60% excipient (T4), PC with supplementing 0.1% mixture of 20% MEO, 20% PGE, and 60% excipient (T5), and PC with supplementing 0.1% mixture of 10% BCE, 20% MEO, 10% PGE, and 60% excipient (T6). The experiments progressed in 16 days, including 5 days before and 11 days after the first E. coli challenge (day 0). In the E. coli challenge treatments, all pigs were orally inoculated by dividing a total of 10 mL of E. coli F 18 for three consecutive days from day 0 postinoculation (PI). Compared with the PC group, the PFA2 and PFA6 groups significantly increased (P < 0.05) feed efficiency and decreased (P < 0.05) diarrhea during the entire period. At day 11 PI, the PFA6 group significantly improved (P < 0.05) gross energy digestibility compared to the PFA1 group. The PFA6 group significantly decreased (P < 0.05) tumor necrosis factor α (TNF-α) and interleukin-6 in serum and increased (P < 0.05) the villus height to crypt depth ratio (VH:CD). The PFA2 significantly decreased (P < 0.05) the relative protein expression of calprotectin in the ileum. In conclusion, improvements in growth performance, diarrhea reduction, and immunity enhancement are demonstrated when 10% BCE, 20% MEO, 10% PGE, and 60% excipient are mixed.


Phytogenic feed additives (PFA) include various herbs and spices, such as essential oils and polyphenols. Flavonoids and polyphenols contained in PFA are generally known to have antioxidant and antibacterial actions and based on this, PFA is considered an alternative to antibiotics in the swine industry. Pathogenic Escherichia coli infection is one of the most important causes of post-weaning diarrhea (PWD) in pigs. PWD causes intestinal damage, which leads to severe diarrhea, reduced growth performance, and mortality in weaned pigs, resulting in significant financial loss to the swine industry. Therefore, this study was conducted to investigate the effects of supplementing different ratios of PFA to weaned pigs challenged with E. coli and determine the optimal mixing ratio for PWD prevention. Our study results showed that growth performance was improved when supplementing a mixture of 10% bitter citrus extract (BCE), 20% microencapsulated blend of thymol and carvacrol (MEO), 10% premixture of grape seed and grape marc extract, green tea, and hops (PGE), and 60% excipient. Also, the effect of improving the immune response and intestinal morphology was shown. In conclusion, a mixture of 10% BCE, 20% MEO, 10% PGE, and 60% excipients is considered the optimal mixing ratio.


Subject(s)
Escherichia coli Infections , Swine Diseases , Swine , Animals , Escherichia coli , Weaning , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Excipients , Diarrhea/prevention & control , Diarrhea/veterinary , Diet/veterinary , Nutrients , Immunity , Animal Feed/analysis , Swine Diseases/prevention & control
3.
J Anim Sci Biotechnol ; 13(1): 107, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36050784

ABSTRACT

BACKGROUND: This study was conducted to investigate the effects of each phytogenic feed additive (PFA; PFA1, bitter citrus extract; PFA2, a microencapsulated blend of thymol and carvacrol; PFA3, a mixture of bitter citrus extract, thymol, and carvacrol; PFA4, a premixture of grape seed, grape marc extract, green tea, and hops; PFA5, fenugreek seed powder) on the growth performance, nutrient digestibility, intestinal morphology, and immune response in weaned pigs infected with Escherichia coli (E. coli). RESULTS: A total of 63 4-week-old weaned pigs were placed in individual metabolic cages and assigned to seven treatment groups. The seven treatments were as follows: 1) NC; basal diet without E. coli challenge, 2) PC; basal diet with E. coli challenge, 3) T1; PC + 0.04% PFA1, 4) T2; PC + 0.01% PFA2, 5) T3; PC + 0.10% PFA3, 6) T4; PC + 0.04% PFA4, 7) T5; PC + 0.10% PFA5. The experiments lasted in 21 d, including 7 d before and 14 d after the first E. coli challenge. In the E. coli challenge treatments, all pigs were orally inoculated by dividing a total of 10 mL of E. coli F18 for 3 consecutive days. The PFA-added groups significantly increased (P < 0.05) average daily gain and feed efficiency and decreased (P < 0.05) the fecal score at d 0 to 14 post-inoculation (PI). Tumor necrosis factor α was significantly lower (P < 0.05) in the PFA-added groups except for T1 in d 14 PI compared to the PC treatment. The T3 had a higher (P < 0.05) immunoglobulin G and immunoglobulin A concentration compared to the PC treatment at d 7 PI. Also, T3 showed significantly higher (P < 0.05) villus height:crypt depth and claudin 1 expression in ileal mucosa, and significantly down-regulated (P < 0.05) the expression of calprotectin compared to the PC treatment. CONCLUSIONS: Supplementation of PFA in weaned pigs challenged with E. coli alleviated the negative effects of E. coli and improved growth performance. Among them, the mixed additive of bitter citrus extract, thymol, and carvacrol showed the most effective results, improving immune response, intestinal morphology, and expression of tight junctions.

4.
Animals (Basel) ; 10(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932849

ABSTRACT

The aim of the present study was to evaluate the effects of adding dietary rumen-protected microencapsulated supplements into the ruminal fluid on the milk fat compositions of dairy cows. These supplements comprised linseed oil, vitamin E, rosemary extract, and hydrogenated palm oil (MO; Microtinic® Omega, Vetagro S.p.A, Reggio Emilia, Italy). For in vitro ruminal fermentation, Holstein-Friesian dairy cows each equipped with a rumen cannula were used to collect ruminal fluid. Different amounts (0%, 1%, 2%, 3%, 4%, and 5%) of MO were added to the diets to collect ruminal fluids. For the in vivo study, 36 Holstein-Friesian dairy cows grouped by milk yield (32.1 ± 6.05 kg/d/head), days in milk (124 ± 84 d), and parity (2 ± 1.35) were randomly and evenly assigned to 0.7% linseed oil (LO; as dry matter (DM) basis) and 2% MO (as DM basis) groups. These two groups were fed only a basal diet (total mixed ration (TMR), silage, and concentrate for 4 weeks) (period 1). They were then fed with the basal diet supplemented with oil (0.7 LO and 2% MO of DM) for 4 weeks (period 2). In the in vitro experiment, the total gas production was found to be numerically decreased in the group supplemented with 3% MO at 48 h post in vitro fermentation. A reduction of total gas production (at 48 h) and increase in ammonia concentration (24 h) were also observed in the group supplemented with 4% to 5% MO (p < 0.05). There were no differences in the in vitro fermentation results, including pH, volatile fatty acids, or CH4 among groups supplemented with 0%, 1%, and 2% MO. The results of the in vitro study suggest that 2% MO is an optimal dosage of MO supplementation in cows' diets. In the in vivo experiment, the MO supplement more significantly (p < 0.01) increased the yield of total w3 fatty acids than LO (9.24 vs. 17.77 mg/100 g milk). As a result, the ratio of total omega-6 to omega-3 fatty acids was decreased (p < 0.001) in the MO group compared to that in the LO group (6.99 vs. 3.48). However, the milk yield and other milk compositions, except for milk urea nitrogen, were similar between the two groups (p > 0.05). Collectively, these results suggest that the dietary supplementation of 2% MO is beneficial for increasing omega-3 fatty acids without any negative effects on the milk yield of dairy cows.

5.
Animals (Basel) ; 10(3)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32183035

ABSTRACT

The present study was conducted to evaluate the encapsulated essential oils (EEO) as an alternative to anticoccidials using a coccidiosis vaccine challenged model in broiler chickens. A total of 600 one-day-old male broiler chicks were provided with no added corn/soybean-meal-based control diet or diets that contained either salinomycin (SAL) or thymol- and carvacrol-based EEO at 60 and 120 mg per kg of diet. Before challenge at 21 days, each treatment had 10 replicates except for the no-added control group, which had 20 replicates. On day 21, half of the control groups were orally challenged with a coccidiosis vaccine at 25 times higher than the recommended vaccine dose. During 22 to 28 days (i.e., one-week post coccidiosis vaccine challenge), the challenged chickens had a decrease (P < 0.05) in body weight gain and feed intake but an increase in feed conversion ratio compared with the non-challenged, naïve control chickens. However, dietary EEO significantly counteracted (P < 0.05) coccidiosis-vaccine-induced depression in body weight gain and feed intake. Inclusion of dietary EEO linearly decreased (P < 0.05) the concentrations of the volatile fatty acids. Dietary SAL and EEO affected gut morphology in chickens at 20 days post-hatch. Dietary EEO linearly (P = 0.073) increased serum catalase activity as the inclusion level increased. Collectively, our study shows that dietary EEO increased coccidiosis-vaccine-induced growth depression and altered gut physiology in broiler chickens. Our study adds to the accumulating evidence that dietary EEO is proven to be an effective alternative to anticoccidials for broiler chickens.

6.
Asian-Australas J Anim Sci ; 29(7): 998-1003, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27004816

ABSTRACT

Although exogenous protease enzymes have been used in poultry diets quite extensively, this has not been the case for pig diets. In general, due to their better gut fermentative capacity and longer transit time, pigs have greater capacity to digest dietary proteins than poultry. However, in early-weaned piglets, the stress brought about by weaning adversely affects the digestion of dietary proteins. Therefore, a study was conducted to determine the effects of a commercial protease enzyme in weanling pigs. Indices of growth, nutrient digestibility, blood profiles, fecal microflora, fecal gas emission and fecal scores were measured during the study. A total of 50 weanling pigs (6.42±0.12 kg) at 28 d of age were randomly assigned to receive 1 of 2 dietary treatments: i) control diet (corn-soy based) with no supplemental protease (CON), and ii) control diet+200 g/ton protease (PROT) for 42 d. A completely randomized design consisting of 2 treatments, 5 replicates, and 5 pigs in each replicate was used. Growth performance in terms of body weight (27.04±0.38 kg vs 25.75±0.39 kg; p<0.05) and average daily gain (491±7.40 g vs 460±7.46 g; p<0.05) in PROT fed pigs were increased significantly, but gain per feed (0.700±0.01 vs 0.678±0.01; p>0.05) was similar between treatments at d 42. Relative to CON pigs, PROT fed pigs had increased (p<0.05) apparent total tract digestibility (84.66%±0.65% vs 81.21%±1.13% dry matter and 84.02%±0.52% vs 80.47%±1.22% nitrogen) and decreased (p<0.05) NH3 emission (2.0±0.16 ppm vs 1.2±0.12 ppm) in the feces at d 42. Except for a decreased (p<0.05) in blood creatinine level, no differences were observed in red blood cell, white blood cell, lymphocyte, urea nitrogen, and IgG concentrations between treatments. Fecal score and fecal microflora (Lactobacillus and E. coli) were also similar between CON and PROT groups. Overall, the supplementation of protease enzyme in weanling pigs resulted in improved growth rate and nutrient digestibility. Exogenous protease enzyme reduced fecal NH3 emission, thus, potentially serving as a tool in lowering noxious gas contribution of livestock production in the environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...