Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 62(8): 1342-1346, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37021938

ABSTRACT

Some bacteria survive in nutrient-poor environments and resist killing by antimicrobials by forming spores. The cortex layer of the peptidoglycan cell wall that surrounds mature spores contains a unique modification, muramic-δ-lactam, that is essential for spore germination and outgrowth. Two proteins, the amidase CwlD and the deacetylase PdaA, are required for muramic-δ-lactam synthesis in cells, but their combined ability to generate muramic-δ-lactam has not been directly demonstrated. Here we report an in vitro reconstitution of cortex peptidoglycan biosynthesis, and we show that CwlD and PdaA together are sufficient for muramic-δ-lactam formation. Our method enables characterization of the individual reaction steps, and we show for the first time that PdaA has transamidase activity, catalyzing both the deacetylation of N-acetylmuramic acid and cyclization of the product to form muramic-δ-lactam. This activity is unique among peptidoglycan deacetylases and is notable because it may involve the direct ligation of a carboxylic acid with a primary amine. Our reconstitution products are nearly identical to the cortex peptidoglycan found in spores, and we expect that they will be useful substrates for future studies of enzymes that act on the spore cortex.


Subject(s)
Peptidoglycan , Spores, Bacterial , Spores, Bacterial/chemistry , Spores, Bacterial/metabolism , Peptidoglycan/chemistry , Bacteria/metabolism , Cell Wall/chemistry , Lactams/metabolism , Bacterial Proteins/metabolism
2.
Contrast Media Mol Imaging ; 2019: 2183051, 2019.
Article in English | MEDLINE | ID: mdl-31281232

ABSTRACT

The poor retention and survival of cells after transplantation to solid tissue represent a major obstacle for the effectiveness of stem cell-based therapies. The ability to track stem cells in vivo can lead to a better understanding of the biodistribution of transplanted cells, in addition to improving the analysis of stem cell therapies' outcomes. Here, we described the use of a carbon nanotube-based contrast agent (CA) for X-ray computed tomography (CT) imaging as an intracellular CA to label bone marrow-derived mesenchymal stem cells (MSCs). Porcine MSCs were labeled without observed cytotoxicity. The CA consists of a hybrid material containing ultra-short single-walled carbon nanotubes (20-80 nm in length, US-tubes) and Bi(III) oxo-salicylate clusters which contain four Bi3+ ions per cluster (Bi4C). The CA is thus abbreviated as Bi4C@US-tubes.


Subject(s)
Bismuth , Contrast Media/chemistry , Mesenchymal Stem Cell Transplantation , Nanotubes, Carbon , Staining and Labeling/methods , Stem Cells/cytology , Tomography, X-Ray Computed/methods , Animals , Humans , Mesenchymal Stem Cells/cytology , Swine , Tissue Distribution
3.
ACS Appl Mater Interfaces ; 9(7): 5709-5716, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28072512

ABSTRACT

Carbon nanotubes (CNTs) have been used for a plethora of biomedical applications, including their use as delivery vehicles for drugs, imaging agents, proteins, DNA, and other materials. Here, we describe the synthesis and characterization of a new CNT-based contrast agent (CA) for X-ray computed tomography (CT) imaging. The CA is a hybrid material derived from ultrashort single-walled carbon nanotubes (20-80 nm long, US-tubes) and Bi(III) oxo-salicylate clusters with four Bi(III) ions per cluster (Bi4C). The element bismuth was chosen over iodine, which is the conventional element used for CT CAs in the clinic today due to its high X-ray attenuation capability and its low toxicity, which makes bismuth a more-promising element for new CT CA design. The new CA contains 20% by weight bismuth with no detectable release of bismuth after a 48 h challenge by various biological media at 37 °C, demonstrating the presence of a strong interaction between the two components of the hybrid material. The performance of the new Bi4C@US-tubes solid material as a CT CA has been assessed using a clinical scanner and found to possess an X-ray attenuation ability of >2000 Hounsfield units (HU).

SELECTION OF CITATIONS
SEARCH DETAIL
...