Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Microb Cell Fact ; 23(1): 127, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698430

ABSTRACT

BACKGROUND: Methane is a greenhouse gas with a significant potential to contribute to global warming. The biological conversion of methane to ectoine using methanotrophs represents an environmentally and economically beneficial technology, combining the reduction of methane that would otherwise be combusted and released into the atmosphere with the production of value-added products. RESULTS: In this study, high ectoine production was achieved using genetically engineered Methylomicrobium alcaliphilum 20Z, a methanotrophic ectoine-producing bacterium, by knocking out doeA, which encodes a putative ectoine hydrolase, resulting in complete inhibition of ectoine degradation. Ectoine was confirmed to be degraded by doeA to N-α-acetyl-L-2,4-diaminobutyrate under nitrogen depletion conditions. Optimal copper and nitrogen concentrations enhanced biomass and ectoine production, respectively. Under optimal fed-batch fermentation conditions, ectoine production proportionate with biomass production was achieved, resulting in 1.0 g/L of ectoine with 16 g/L of biomass. Upon applying a hyperosmotic shock after high-cell-density culture, 1.5 g/L of ectoine was obtained without further cell growth from methane. CONCLUSIONS: This study suggests the optimization of a method for the high production of ectoine from methane by preventing ectoine degradation. To our knowledge, the final titer of ectoine obtained by M. alcaliphilum 20ZDP3 was the highest in the ectoine production from methane to date. This is the first study to propose ectoine production from methane applying high cell density culture by preventing ectoine degradation.


Subject(s)
Amino Acids, Diamino , Methane , Methylococcaceae , Amino Acids, Diamino/metabolism , Amino Acids, Diamino/biosynthesis , Methane/metabolism , Methylococcaceae/metabolism , Methylococcaceae/genetics , Fermentation , Biomass , Genetic Engineering , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Metabolic Engineering/methods , Batch Cell Culture Techniques
2.
Biotechnol Biofuels Bioprod ; 15(1): 5, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35418141

ABSTRACT

BACKGROUND: Ectoine (1,3,4,5-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) is an attractive compatible solute because of its wide industrial applications. Previous studies on the microbial production of ectoine have focused on sugar fermentation. Alternatively, methane can be used as an inexpensive and abundant resource for ectoine production by using the halophilic methanotroph, Methylomicrobium alcaliphilum 20Z. However, there are some limitations, including the low production of ectoine from methane and the limited tools for the genetic manipulation of methanotrophs to facilitate their use as industrial strains. RESULTS: We constructed M. alcaliphilum 20ZDP with a high conjugation efficiency and stability of the episomal plasmid by the removal of its native plasmid. To improve the ectoine production in M. alcaliphilum 20Z from methane, the ectD (encoding ectoine hydroxylase) and ectR (transcription repressor of the ectABC-ask operon) were deleted to reduce the formation of by-products (such as hydroxyectoine) and induce ectoine production. When the double mutant was batch cultured with methane, ectoine production was enhanced 1.6-fold compared to that obtained with M. alcaliphilum 20ZDP (45.58 mg/L vs. 27.26 mg/L) without growth inhibition. Notably, a maximum titer of 142.32 mg/L was reached by the use of an optimized medium for ectoine production containing 6% NaCl and 0.05 µM of tungsten without hydroxyectoine production. This result demonstrates the highest ectoine production from methane to date. CONCLUSIONS: Ectoine production was significantly enhanced by the disruption of the ectD and ectR genes in M. alcaliphilum 20Z under optimized conditions favoring ectoine accumulation. We demonstrated effective genetic engineering in a methanotrophic bacterium, with enhanced production of ectoine from methane as the sole carbon source. This study suggests a potentially transformational path to commercial sugar-based ectoine production.

3.
Sci Rep ; 11(1): 2538, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510339

ABSTRACT

Two putative methylglyoxal synthases, which catalyze the conversion of dihydroxyacetone phosphate to methylglyoxal, from Oceanithermus profundus DSM 14,977 and Clostridium difficile 630 have been characterized for activity and thermal stability. The enzyme from O. profundus was found to be hyperthermophilic, with the optimum activity at 80 °C and the residual activity up to 59% after incubation of 15 min at 95 °C, whereas the enzyme from C. difficile was mesophilic with the optimum activity at 40 °C and the residual activity less than 50% after the incubation at 55 °C or higher temperatures for 15 min. The structural analysis of the enzymes with molecular dynamics simulation indicated that the hyperthermophilic methylglyoxal synthase has a rigid protein structure with a lower overall root-mean-square-deviation value compared with the mesophilic or thermophilic counterparts. In addition, the simulation results identified distinct regions with high fluctuations throughout those of the mesophilic or thermophilic counterparts via root-mean-square-fluctuation analysis. Specific molecular interactions focusing on the hydrogen bonds and salt bridges in the distinct regions were analyzed in terms of interatomic distances and positions of the individual residues with respect to the secondary structures of the enzyme. Key interactions including specific salt bridges and hydrogen bonds between a rigid beta-sheet core and surrounding alpha helices were found to contribute to the stabilisation of the hyperthermophilic enzyme by reducing the regional fluctuations in the protein structure. The structural information and analysis approach in this study can be further exploited for the engineering and industrial application of the enzyme.


Subject(s)
Carbon-Oxygen Lyases/chemistry , Models, Molecular , Thermodynamics , Amino Acid Sequence , Carbon-Oxygen Lyases/genetics , Carbon-Oxygen Lyases/metabolism , Enzyme Stability , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Protein Conformation , Protein Engineering , Recombinant Proteins , Structure-Activity Relationship , Temperature
4.
J Biotechnol ; 309: 81-84, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31899249

ABSTRACT

It is carried out for researches to convert methane, the second most potent greenhouse gas, to high-value chemicals and fuels by using methanotrophs. In this study, we observed that cell growth of Methylomicrobium alcaliphilum 20Z in the batch cultures on methane or methanol was stimulated by the addition of tungsten (W) without formate accumulation. Not only biomass yield but also the total products yield (biomass and formate) on carbon basis increased up to 11.50-fold and 1.28-fold respectively in W-added medium. Furthermore, a significant decrease in CO2 yield from formate was observed in the W-added cells, which indicates that W might have affected the activity of certain enzymes involved in carbon assimilation as well as formate dehydrogenase (FDH). The results of this study suggest that M. alcaliphilum 20Z is a promising model system for studying the physiology of the aerobic methanotroph and for enabling its industrial use for methane conversion through high cell density cultivation.


Subject(s)
Batch Cell Culture Techniques/methods , Methane/metabolism , Methanol/metabolism , Methylococcaceae/drug effects , Methylococcaceae/growth & development , Tungsten/pharmacology , Biomass , Carbon Dioxide/metabolism , Cell Count , Formate Dehydrogenases/metabolism , Formates/metabolism
5.
Enzyme Microb Technol ; 132: 109437, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31731966

ABSTRACT

Biological production of 2,3-butanediol (2,3-BDO), a C4 platform chemical, has been studied recently, but the high cost of separation and purification before chemical conversion is substantial. To overcome this obstacle, we have conducted a study to convert 2,3-BDO to mevalonate, a terpenoid intermediate, using recombinant Pseudomonas putida and this biological process won't need the separation and purification process of 2,3-BDO. The production of mevalonate when 2,3-BDO was used as a substrate was 6.61 and 8.44 times higher than when glucose and glycerol were used as substrates under the same conditions, respectively. Lower aeration contributed to higher yields of mevalonate in otherwise identical conditions. The maximum mevalonate production on the shaking flask scale was about 2.21 g/L, in this study (product yield was 0.295, 27% of theoretical yield (1.10)). This study was the first successful attempt for mevalonate production by P. putida using 2,3-BDO as the sole carbon source and presented a new metabolic engineering tool and biological process for mevalonate synthesis.


Subject(s)
Butylene Glycols/metabolism , Metabolic Engineering , Mevalonic Acid/metabolism , Pseudomonas putida/metabolism , Carbon/metabolism , Glucose/metabolism , Glycerol/metabolism , Metabolic Networks and Pathways , Pseudomonas putida/genetics
6.
Microb Cell Fact ; 18(1): 168, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31601210

ABSTRACT

BACKGROUND: Bioethanol is one of the most representative eco-friendly fuels developed to replace the non-renewable fossil fuels and is the most successful commercially available bio-conversion technology till date. With the availability of inexpensive carbon sources, such as cellulosic biomass, bioethanol production has become cheaper and easier to perform, which can facilitate the development of methods for converting ethanol into higher value-added biochemicals. In this study, a bioconversion process using Pseudomonas putida as a biocatalyst was established, wherein ethanol was converted to mevalonate. Since ethanol can be converted directly to acetyl-CoA, bypassing its conversion to pyruvate, there is a possibility that ethanol can be converted to mevalonate without producing pyruvate-derived by-products. Furthermore, P. putida seems to be highly resistant to the toxicity caused by terpenoids, and thus can be useful in conducting terpenoid production research. RESULTS: In this study, we first expressed the core genes responsible for mevalonate production (atoB, mvaS, and mvaE) in P. putida and mevalonate production was confirmed. Thereafter, through an improvement in genetic stability and ethanol metabolism manipulation, mevalonate production was enhanced up to 2.39-fold (1.70 g/L vs. 4.07 g/L) from 200 mM ethanol with an enhancement in reproducibility of mevalonate production. Following this, the metabolic characteristics related to ethanol catabolism and mevalonate production were revealed by manipulations to reduce fatty acid biosynthesis and optimize pH by batch fermentation. Finally, we reached a product yield of 0.41 g mevalonate/g ethanol in flask scale culture and 0.32 g mevalonate/g ethanol in batch fermentation. This is the highest experimental yield obtained from using carbon sources other than carbohydrates till date and it is expected that further improvements will be made through the development of fermentation methods. CONCLUSION: Pseudomonas putida was investigated as a biocatalyst that can efficiently convert ethanol to mevalonate, the major precursor for terpenoid production, and this research is expected to open new avenues for the production of terpenoids using microorganisms that have not yet reached the stage of mass production.


Subject(s)
Acetyl Coenzyme A/metabolism , Ethanol/metabolism , Metabolic Engineering/methods , Mevalonic Acid/metabolism , Microorganisms, Genetically-Modified , Pseudomonas putida , Terpenes/metabolism , Biofuels , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Pyruvic Acid/metabolism
7.
Curr Microbiol ; 76(6): 732-737, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30993398

ABSTRACT

Several bioprocessing technologies, such as separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and consolidated bioprocessing (CBP), have been highlighted to produce bio-based fuels and chemicals from lignocellulosic biomass. Successful CBP, an efficient and economical lignocellulosic biorefinery process compared with other processes, requires microorganisms with sufficient cellulolytic activity and biofuel/chemical-producing ability. Here, we report the complete genome of Paenibacillus sp. CAA11, a newly isolated promising microbial host for CBP-producing ethanol and organic acids from cellulose. The genome of Paenibacillus sp. CAA11 comprises one 4,888,410 bp chromosome with a G + C content of 48.68% containing 4418 protein-coding genes, 102 tRNA genes, and 39 rRNA genes. The functionally active cellulase, encoded by CAA_GH5 was identified to belong to glycosyl hydrolase family 5 (GH5) and consisted of a catalytic domain and a cellulose-binding domain 3 (CBM3). When cellulolytic activity of CAA_GH5 was assayed through Congo red method by measuring the size of halo zone, the recombinant Bacillus subtilis RIK1285 expressing CAA_GH5 showed a comparable cellulolytic activity to B. subtilis RIK1285 expressing Cel5, a previously verified powerful bacterial cellulase. This study demonstrates the potential of Paenibacillus sp. CAA11 as a CBP-enabling microbe for cost-effective biofuels/chemicals production from lignocellulosic biomass.


Subject(s)
Genome, Bacterial , Paenibacillus/genetics , Sequence Analysis, DNA , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Base Composition , Biotransformation , Carboxylic Acids/metabolism , Congo Red/metabolism , Ethanol/metabolism , Genes, Bacterial , Lignin/genetics , Lignin/metabolism , RNA, Ribosomal/genetics , RNA, Transfer/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
8.
J Ind Microbiol Biotechnol ; 44(9): 1301-1311, 2017 09.
Article in English | MEDLINE | ID: mdl-28567672

ABSTRACT

Here, Corynebacterium glutamicum ATCC13032 expressing Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440 was designed to produce 9-(nonanoyloxy) nonanoic acid from 10-ketostearic acid. Diverse parameters including cultivation and reaction temperatures, type of detergent, and pH were found to improve biotransformation efficiency. The optimal temperature of cultivation for the production of 9-(nonanoyloxy) nonanoic acid from 10-ketostearic acid using whole cells of recombinant C. glutamicum was 15 °C, but the reaction temperature was optimal at 30 °C. Enhanced conversion efficiency was obtained by supplying 0.05 g/L of Tween 80 at pH 7.5. Under these optimal conditions, recombinant C. glutamicum produced 0.28 mM of 9-(nonanoyloxy) nonanoic acid with a 75.6% (mol/mol) conversion yield in 2 h. This is the first report on the biotransformation of 10-ketostearic acid to 9-(nonanoyloxy) nonanoic acid with a recombinant whole-cell C. glutamicum-based biocatalyst and the results demonstrate the feasibility of using C. glutamicum as a whole-cell biocatalyst.


Subject(s)
Biocatalysis , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Fatty Acids/biosynthesis , Biotransformation , Fatty Acids/metabolism , Hydrogen-Ion Concentration , Mixed Function Oxygenases/metabolism , Pseudomonas putida/enzymology , Pseudomonas putida/genetics , Stearic Acids/metabolism , Temperature
9.
Appl Microbiol Biotechnol ; 101(7): 2821-2830, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28078395

ABSTRACT

Conversion of crude glycerol derived from biodiesel processes to value-added chemicals has attracted much attention. Herein, Raoultella ornithinolytica B6 was investigated for the high production of 2,3-butanediol (2,3-BD) from glycerol without 1,3-propanediol (1,3-PD) formation, a by-product hindering 2,3-BD purification. By evaluating the effects of temperature, agitation speed, and pH control strategy, the fermentation conditions favoring 2,3-BD production were found to be 25 °C, 400 rpm, and pH control with a lower limit of 5.5, respectively. Notably, significant pH fluctuations which positively affect 2,3-BD production were generated by simply controlling the lower pH limit at 5.5. In fed-batch fermentation under those conditions, R. ornithinolytica B6 produced 2,3-BD up to 79.25 g/L, and further enhancement of 2,3-BD production (89.45 g/L) was achieved by overexpressing homologous 2,3-BD synthesis genes (the budABC). When pretreated crude glycerol was used as a sole carbon source, R. ornithinolytica B6 overexpressing budABC produced 78.10 g/L of 2,3-BD with the yield of 0.42 g/g and the productivity of 0.62 g/L/h. The 2,3-BD titer, yield, and productivity values obtained in this study are the highest 2,3-BD production from glycerol among 1,3-PD synthesis-deficient 2,3-BD producers, demonstrating R. ornithinolytica B6 as a promising 2,3-BD producer from glycerol.


Subject(s)
Butylene Glycols/metabolism , Enterobacteriaceae/metabolism , Glycerol/metabolism , Propylene Glycols/metabolism , Biofuels , Bioreactors , Carbon/metabolism , Culture Media/chemistry , Fermentation , Hydrogen-Ion Concentration , Temperature
10.
J Biotechnol ; 241: 101-107, 2017 Jan 10.
Article in English | MEDLINE | ID: mdl-27908774

ABSTRACT

Carbon dioxide (CO2) is an abundant and cheap carbon source that is partly responsible for global warming in the atmosphere. The objective of this study was to construct a recombinant E. coli strain that can show enhanced production of succinate derived from CO2. In this study, we confirmed the enhancement of utilization by analyzing succinate containing one carbon-13 (13C) derived from 13CO2. Firstly, the carbonic anhydrase gene (SP(-)HCCA) derived from Hahella chejuensis KCTC 2396 was over-expressed to enhance carbon flux toward bicarbonate ion (HCO3-) synthesis in E. coli. The phosphoenolpyruvate carboxylase gene (ppc) was over-expressed to enhance the production of oxaloacetate by enhancing the carbon flux. Compared with the control strain, the percentage of the succinate containing one 13C (succinate119) to total succinate was enhanced by approximately 2.80-fold and the amount of succinate119 also increased by approximately 4.09-fold in SGJS120. Secondly, the lactate dehydrogenase gene (ldhA) was deleted to re-direct the utilization of the carbon source from glucose to enhance succinate production in SGJS120. However, ldhA deletion did not increase CO2 utilization in SJGS120. Finally, the phosphotransferase system gene (ptsG) and pyruvate kinase F gene (pykF) were deleted to increase the amount of phosphoenolpyruvate (PEP). SGJS126 (pykF deletion strain) showed the highest increase, which was 6.05-fold higher than the control strain. From the results, SP(-)HCCA overexpression and pykF deletion may be useful for enhancing CO2 utilization in E. coli. Additionally, engineered strains showed the potential to reduce the cost of succinate production by using an industrially cheaper carbon source such as CO2 and converting CO2 to a valuable chemical.


Subject(s)
Carbon Dioxide/metabolism , Carbonic Anhydrases/metabolism , Escherichia coli/genetics , Phosphoenolpyruvate Carboxylase/metabolism , Succinic Acid/metabolism , Carbonic Anhydrases/genetics , Escherichia coli/metabolism , Metabolic Engineering , Metabolic Networks and Pathways , Phosphoenolpyruvate Carboxylase/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
11.
J Biotechnol ; 240: 43-47, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-27776976

ABSTRACT

Methane is an abundant, inexpensive one-carbon feedstock and one of the most powerful greenhouse gases. Because it does not compete with food demand, it is considered a promising carbon feedstock for the production of valuable products using methanotrophic bacteria. Here, we isolated a novel methanotrophic bacterium, Methylomonas sp. SW1, from a sewage sample obtained from Wonju City Water Supply Drainage Center, Republic of Korea. The conditions for uracil production by Methylomonas sp. SW1, such as Cu2+ concentration and temperature were investigated and optimized. As a result, Methylomonas sp. SW1 produced uracil from methane as a sole carbon source with a titer of 2.1mg/L in 84h without genetic engineering under the optimized condition. The results in this study demonstrate the feasibility of using Methylomonas sp. SW1 for the production of uracil from methane. This is the first report of uracil production from gas feedstock by methanotrophic bacteria.


Subject(s)
Methane/metabolism , Methylomonas/metabolism , Uracil/biosynthesis , Uracil/isolation & purification , Bacteriological Techniques , Methylomonas/genetics , Methylomonas/isolation & purification , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Republic of Korea
12.
PLoS One ; 11(10): e0165076, 2016.
Article in English | MEDLINE | ID: mdl-27760200

ABSTRACT

Biological production of 2,3-butandiol (2,3-BD) has received great attention as an alternative to the petroleum-based 2,3-BD production. In this study, a high production of 2,3-BD in fed-batch fermentation was investigated with a newly isolated bacterium designated as Raoultella ornithinolytica B6. The isolate produced 2,3-BD as the main product using hexoses (glucose, galactose, and fructose), pentose (xylose) and disaccharide (sucrose). The effects of temperature, pH-control schemes, and agitation speeds on 2,3-BD production were explored to optimize the fermentation conditions. Notably, cell growth and 2,3-BD production by R. ornithinolytica B6 were higher at 25°C than at 30°C. When three pH control schemes (no pH control, pH control at 7, and pH control at 5.5 after the pH was decreased to 5.5 during fermentation) were tested, the best 2,3-BD titer and productivity along with reduced by-product formation were achieved with pH control at 5.5. Among different agitation speeds (300, 400, and 500 rpm), the optimum agitation speed was 400 rpm with 2,3-BD titer of 68.27 g/L, but acetic acid was accumulated up to 23.32 g/L. Further enhancement of the 2,3-BD titer (112.19 g/L), yield (0.38 g/g), and productivity (1.35 g/L/h) as well as a significant reduction of acetic acid accumulation (9.71 g/L) was achieved by the overexpression of homologous budABC genes, the 2,3-BD-synthesis genes involved in the conversion of pyruvate to 2,3-BD. This is the first report presenting a high 2,3-BD production by R.ornithinolytica which has attracted little attention with respect to 2,3-BD production, extending the microbial spectrum of 2,3-BD producers.


Subject(s)
Batch Cell Culture Techniques/methods , Butylene Glycols/metabolism , Enterobacteriaceae/growth & development , Bacterial Proteins/metabolism , Enterobacteriaceae/enzymology , Fermentation , Hydrogen-Ion Concentration , Temperature
13.
Biotechnol Biofuels ; 8: 146, 2015.
Article in English | MEDLINE | ID: mdl-26379778

ABSTRACT

BACKGROUND: 2,3-Butanediol (2,3-BDO) is a promising bio-based chemical because of its wide industrial applications. Previous studies on microbial production of 2,3-BDO has focused on sugar fermentation. Alternatively, biodiesel-derived crude glycerol can be used as a cheap resource for 2,3-BDO production; however, a considerable formation of 1,3-propanediol (1,3-PDO) and low concentration, productivity, and yield of 2,3-BDO from glycerol fermentation are limitations. RESULTS: Here, we report a high production of 2,3-BDO from crude glycerol using the engineered Klebsiella oxytoca M3 in which pduC (encoding glycerol dehydratase large subunit) and ldhA (encoding lactate dehydrogenase) were deleted to reduce the formation of 1,3-PDO and lactic acid. In fed-batch fermentation with the parent strain K. oxytoca M1, crude glycerol was more effective than pure glycerol as a carbon source in 2,3-BDO production (59.4 vs. 73.8 g/L) and by-product reduction (1,3-PDO, 8.9 vs. 3.7 g/L; lactic acid, 18.6 vs. 9.8 g/L). When the double mutant was used in fed-batch fermentation with pure glycerol, cell growth and glycerol consumption were significantly enhanced and 2,3-BDO production was 1.9-fold higher than that of the parent strain (59.4 vs. 115.0 g/L) with 6.9 g/L of 1,3-PDO and a small amount of lactic acid (0.7 g/L). Notably, when crude glycerol was supplied, the double mutant showed 1,3-PDO-free 2,3-BDO production with high concentration (131.5 g/L), productivity (0.84 g/L/h), and yield (0.44 g/g crude glycerol). This result is the highest 2,3-BDO production from glycerol fermentation to date. CONCLUSIONS: 2,3-BDO production from glycerol was dramatically enhanced by disruption of the pduC and ldhA genes in K. oxytoca M1 and 1,3-PDO-free 2,3-BDO production was achieved by using the double mutant and crude glycerol. 2,3-BDO production obtained in this study is comparable to 2,3-BDO production from sugar fermentation, demonstrating the feasibility of economic industrial 2,3-BDO production using crude glycerol.

14.
PLoS One ; 10(9): e0138109, 2015.
Article in English | MEDLINE | ID: mdl-26368397

ABSTRACT

Microbial production of 2,3-butanediol (2,3-BDO) has been attracting increasing interest because of its high value and various industrial applications. In this study, high production of 2,3-BDO using a previously isolated bacterium Klebsiella oxytoca M1 was carried out by optimizing fermentation conditions and overexpressing acetoin reductase (AR). Supplying complex nitrogen sources and using NaOH as a neutralizing agent were found to enhance specific production and yield of 2,3-BDO. In fed-batch fermentations, 2,3-BDO production increased with the agitation speed (109.6 g/L at 300 rpm vs. 118.5 g/L at 400 rpm) along with significantly reduced formation of by-product, but the yield at 400 rpm was lower than that at 300 rpm (0.40 g/g vs. 0.34 g/g) due to acetoin accumulation at 400 rpm. Because AR catalyzing both acetoin reduction and 2,3-BDO oxidation in K. oxytoca M1 revealed more than 8-fold higher reduction activity than oxidation activity, the engineered K. oxytoca M1 overexpressing the budC encoding AR was used in fed-batch fermentation. Finally, acetoin accumulation was significantly reduced by 43% and enhancement of 2,3-BDO concentration (142.5 g/L), yield (0.42 g/g) and productivity (1.47 g/L/h) was achieved compared to performance with the parent strain. This is by far the highest titer of 2,3-BDO achieved by K. oxytoca strains. This notable result could be obtained by finding favorable fermentation conditions for 2,3-BDO production as well as by utilizing the distinct characteristic of AR in K. oxytoca M1 revealing the nature of reductase.


Subject(s)
Alcohol Oxidoreductases/biosynthesis , Bacterial Proteins/biosynthesis , Butylene Glycols/metabolism , Gene Expression , Klebsiella oxytoca/enzymology , Metabolic Engineering , Alcohol Oxidoreductases/genetics , Bacterial Proteins/genetics , Fermentation , Klebsiella oxytoca/genetics
15.
J Biotechnol ; 198: 1-2, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25660421

ABSTRACT

Here we report the full genome sequence of Klesiella oxytoca M1, isolated from Manripo area of South Korea. The strain K. oxytoca M1 is able to produce either 2,3-butanediol or acetoin selectively by controlling the pH and temperature.


Subject(s)
Genome, Bacterial/genetics , Klebsiella oxytoca/genetics , Acetoin/metabolism , Base Sequence , Butylene Glycols/metabolism , Hydrogen-Ion Concentration , Klebsiella oxytoca/metabolism , Molecular Sequence Data , Republic of Korea , Temperature
16.
Appl Biochem Biotechnol ; 170(8): 1922-33, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23793864

ABSTRACT

A newly isolated bacterium, designated as Klebsiella oxytoca M1, produced 2,3-butanediol (2,3-BDO) or acetoin selectively as a major product depending on temperature in a defined medium. K. oxytoca M1 produced 2,3-BDO mainly (0.32~0.34 g/g glucose) at 30 °C while acetoin was a major product (0.32~0.38 g/g glucose) at 37 °C. To investigate factors affecting product profiles according to temperature, the expression level of acetoin reductase (AR) that catalyzes the conversion of acetoin to 2,3-BDO was analyzed using crude protein extracted from K. oxytoca M1 grown at 30 and 37 °C. The AR expression at 37 °C was 12.8-fold lower than that at 30 °C at the stationary phase and reverse transcription PCR (RT-PCR) analysis of the budC (encoding AR) was also in agreement with the AR expression results. When AR was overexpressed using K. oxytoca M1 harboring pUC18CM-budC, 2,3-BDO became a major product at 37 °C, indicating that the AR expression level was a key factor determining the major product of K. oxytoca M1 at 37 °C. The results in this study demonstrate the feasibility of using K. oxytoca M1 for the production of not only 2,3-BDO but also acetoin as a major product.


Subject(s)
Acetoin/metabolism , Bioreactors/microbiology , Butylene Glycols/metabolism , Glucose/metabolism , Klebsiella oxytoca/classification , Klebsiella oxytoca/metabolism , Acetoin/isolation & purification , Butylene Glycols/isolation & purification , Species Specificity , Temperature
17.
FEMS Microbiol Lett ; 328(2): 157-65, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22224900

ABSTRACT

Both ThyA and ThyX proteins catalyze the transfer of the methyl group from methylenetetrahydrofolate (CH(2) H(4) -folate) to dUMP, forming dTMP. To estimate the relative steady state expression levels of ThyA and ThyX, Western blot analysis was performed using ThyA or ThyX antiserum on total protein from the wild-type, ΔthyX, and thyX-complemented strains of Corynebacterium glutamicum. The level of ThyA decreased gradually during the stationary growth phase but that of ThyX was maintained steadily. Whereas the expression level of ThyA in a ΔsigB strain was comparable to that of the wild-type, the level of ThyX was significantly diminished in the deletion mutant and was restored to that of the wild-type in the complemented strain, indicating that the level of ThyX was regulated by SigB. Growth of the C. glutamicum ΔsigB strain was dependent upon coupling activity of dihydrofolate reductase (DHFR) with ThyA for the synthesis of thymidine, and thus showed sensitivity to the inhibition of DHFR by the experimental inhibitor, WR99210-HCl. These results suggested that the relative levels of ThyA and ThyX differ in response to different growth phases and that SigB is necessary for maintenance of the level of ThyX during transition into the stationary growth phase.


Subject(s)
Bacterial Proteins/metabolism , Corynebacterium glutamicum/enzymology , Sigma Factor/metabolism , Thymidylate Synthase/metabolism , Blotting, Western , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/growth & development , Culture Media/metabolism , Enzyme Assays , Enzyme Inhibitors/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Genes, Bacterial , Genes, Reporter , Microbial Sensitivity Tests , Mutagenesis , Promoter Regions, Genetic , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tetrahydrofolate Dehydrogenase/metabolism , Thymidine/metabolism , Thymidylate Synthase/genetics , Triazines/pharmacology , beta-Galactosidase/metabolism
18.
FEMS Microbiol Lett ; 307(2): 128-34, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20636973

ABSTRACT

A BLASTP search has shown the presence of a gene homologous to an alternative thymidylate synthase (TS), thyX, in Corynebacterium glutamicum ATCC 13032. To determine if thyX is functionally analogous to thyA, thyX was cloned in a plasmid and the resulting construct was transferred by transformation into a thyA mutant of Escherichia coli. The ThyX from C. glutamicum compensated for the defect in TS-deficient E. coli. A functional knockout of the thyX gene was constructed by allelic replacement using a sucrose counter-selectable suicide plasmid and confirmed by PCR and reverse transcriptase-PCR analyses. This mutant was viable without thymidine supplementation, suggesting that thyX is not an essential gene in C. glutamicum. Growth of the thyX mutant was dependent upon coupling activity of dihydrofolate reductase (DHFR) with ThyA for the synthesis of thymidine, and thus showed sensitivity to the inhibition of DHFR by the experimental inhibitor, WR99210. This indicates that thymidine synthesis was at least partially dependent on thyX expression. As it approached stationary phase, the thyX mutant lost viability much more rapidly than the parental wild type and the mutant complemented the thyX gene, suggesting that the activity of the ThyX enzyme is important in that phase of the growth cycle.


Subject(s)
Bacterial Proteins/metabolism , Corynebacterium glutamicum/enzymology , Thymidylate Synthase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cloning, Molecular , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/growth & development , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Knockout Techniques , Genetic Complementation Test/methods , Microbial Viability/genetics , Mutation , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Nucleic Acid , Thymidylate Synthase/chemistry , Thymidylate Synthase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...