Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Adv Mater ; : e2403090, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695508

ABSTRACT

The droplet-based electricity generator (DEG) has facilitated efficient droplet energy harvesting, yet diversifying its applications necessitates the incorporation of various to the DEG. In this study, we first propose a methodology for advancing the DEG by substituting its conventional metallic electrode with electrically conductive water electrode (WE), which is spontaneously generated during the operation of the DEG with operating liquid. Due to the inherent conductive and fluidic nature of water, the introduction of the WE maintains the electrical output performance of the DEG while imparting functionalities such as high transparency and flexibility. So, the resultant WE applied DEG (WE-DEG) exhibits high optical transmittance (∼ 99%) and retains its electricity-generating capability under varying deformations, including bending and stretching. This innovation expands the versatility of the DEG, and especially, a sun-raindrop dual-mode energy harvester is demonstrated by hybridizing the WE-DEG and photovoltaic (PV) cell. This hybridization effectively addresses the weather-dependent limitations inherent in each energy harvester and enhances the temperature-induced inefficiencies typically observed in PV cells, thereby enhancing the overall efficiency. The introduction of the WE will be poised to catalyze new developments in DEG research, paving the way for broader applicability and enhanced efficiency in droplet energy harvesting technologies. This article is protected by copyright. All rights reserved.

2.
Food Chem Toxicol ; 188: 114636, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582343

ABSTRACT

Nonclinical studies involve in vitro, in silico, and in vivo experiments to assess the toxicokinetics, toxicology, and safety pharmacology of drugs according to regulatory requirements by a national or international authority. In this review, we summarize the potential effects of various underlying diseases governing the absorption, distribution, metabolism, and excretion (ADME) of drugs to consider the use of animal models of diseases in nonclinical trials. Obesity models showed alterations in hepatic metabolizing enzymes, transporters, and renal pathophysiology, which increase the risk of drug-induced toxicity. Diabetes models displayed changes in hepatic metabolizing enzymes, transporters, and glomerular filtration rates (GFR), leading to variability in drug responses and susceptibility to toxicity. Animal models of advanced age exhibited impairment of drug metabolism and kidney function, thereby reducing the drug-metabolizing capacity and clearance. Along with changes in hepatic metabolic enzymes, animal models of metabolic syndrome-related hypertension showed renal dysfunction, resulting in a reduced GFR and urinary excretion of drugs. Taken together, underlying diseases can induce dysfunction of organs involved in the ADME of drugs, ultimately affecting toxicity. Therefore, the use of animal models of representative underlying diseases in nonclinical toxicity studies can be considered to improve the predictability of drug side effects before clinical trials.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Animals , Humans , Pharmaceutical Preparations/metabolism , Drug-Related Side Effects and Adverse Reactions/etiology , Liver/metabolism , Liver/drug effects , Kidney/metabolism , Kidney/drug effects , Drug Evaluation, Preclinical , Glomerular Filtration Rate
3.
Adv Sci (Weinh) ; : e2310185, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634574

ABSTRACT

Gallium liquid metal is one of the promising phase change materials for passive thermal management of electronics due to their high thermal conductivity and latent heat per volume. However, it suffers from severe supercooling, in which molten gallium does not return to solid due to the lack of nucleation. It may require 28.2 °C lower temperature than the original freezing point to address supercooling, leading to unstable thermal regulation performance along fluctuations of cooling condition. Here, gallium is infused into porous copper in an oxide-free environment, forming intermetallic compound impurities at the interfaces to reduce the activation energy for heterogeneous nucleation. The porous-shaped gallium provides ≈63% smaller supercooling than that of the bulk type due to large specific surface area (≈9,070 cm2 per cm3) and high wetting characteristics (≈16° of contact angle) on CuGa2 intermetallic layer. During repetitive heating-cooling cycles, porous-shaped gallium consistently shows propagation of crystallization at even near room temperature (≈25 °C) while maintaining stable performance as thermal buffer, whereas droplet-shaped gallium is gradually degraded due to partial-supercooled state. The findings will improve the responsive thermal regulation performance to relieve a rapid increase in temperature of semiconductors/batteries, and also have a potential for energy storage applications.

4.
J Mech Behav Biomed Mater ; 154: 106536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579394

ABSTRACT

OBJECTIVE: This study aimed to conduct a comparison of trueness and physical and surface properties among five distinct types of additive manufactured (AM) zirconia crowns and zirconia crowns produced using the subtractive manufacturing (SM). MATERIAL AND METHODS: Zirconia crowns were fabricated using five distinct techniques, each varying in the method of slurry transfer and photocuring source. Each experimental group utilized either one of the four digital light processing (DLP)-based techniques (DLP spreading, DLP spreading gradation, DLP vat and DLP circular spreading) or the stereolithography (SLA)-based technique (SLA spreading). The control (CON) group employed SM. To assess accuracy, trueness was measured between the scan and reference data. To analyze the physical properties, voids were examined using high-energy spiral micro-computed tomography scans, and the crystal structure analysis was performed using X-ray diffraction (XRD). Surface roughness was assessed through laser scanning microscopy. RESULTS: Differences in the trueness of internal surfaces of crowns were found among the groups (P < 0.05). Trueness varied across the measurement surfaces (occlusal, lateral, and marginal) in all the groups except for the DLP spreading gradation group (P < 0.05). Voids were observed in all AM groups. All groups showed similar XRD patterns. All AM groups showed significantly greater surface roughness compared to the CON group (P < 0.001). CONCLUSION: The AM zirconia crowns showed bubbles and a rougher surface compared to the SM crowns. All groups exhibited typical zirconia traits and trueness levels within clinically acceptable limits, suggesting that current zirconia AM techniques could be suitable for dental applications.


Subject(s)
Computer-Aided Design , Crowns , X-Ray Microtomography , Zirconium , Surface Properties
5.
Sci Rep ; 14(1): 6153, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38486057

ABSTRACT

The effect of weight loss before in vitro fertilization (IVF) procedures on pregnancy outcomes in women with overweight or obesity and infertility remains controversial. In this systematic review and meta-analysis, we investigated whether weight loss before IVF in these women affected the IVF results and reproductive outcomes. PubMed, Embase, and the Cochrane Library databases were searched from the inception dates until December 2022, using combinations of relevant keywords. Only six randomized controlled trials, including 1627 women with obesity or overweight, were analyzed. The weight change in the intensive care group, compared to the control group who underwent IVF without weight loss was - 4.62 kg (mean difference; 95% confidence interval [CI] - 8.10, - 1.14). Weight loss before IVF did not significantly increase the live birth rate in women with obesity or overweight and infertility (odds ratio, 1.38; 95% CI 0.88, 2.10). The clinical pregnancy, miscarriage, ongoing pregnancy, and ectopic pregnancy rates did not differ between the weight loss and control groups before IVF. This meta-analysis demonstrated that even significant weight loss before IVF in women with obesity or overweight and infertility did not improve the live birth, clinical pregnancy, ongoing pregnancy, or ectopic pregnancy rates. PROSPERO Registration Number: CRD42023455800.


Subject(s)
Infertility , Pregnancy, Ectopic , Pregnancy , Female , Humans , Overweight/complications , Fertilization in Vitro/methods , Infertility/therapy , Pregnancy Rate , Live Birth , Obesity/complications , Weight Loss
6.
Exp Mol Med ; 55(9): 1858-1871, 2023 09.
Article in English | MEDLINE | ID: mdl-37696897

ABSTRACT

The cluster of differentiation 1 (CD1) molecule differs from major histocompatibility complex class I and II because it presents glycolipid/lipid antigens. Moreover, the CD1-restricted T cells that recognize these self and foreign antigens participate in both innate and adaptive immune responses. CD1s are constitutively expressed by professional and nonprofessional antigen-presenting cells in mucosal tissues, namely, the skin, lung, and intestine. This suggests that CD1-reactive T cells are involved in the immune responses of these tissues. Indeed, evidence suggests that these cells play important roles in diverse diseases, such as inflammation, autoimmune disease, and infection. Recent studies elucidating the molecular mechanisms by which CD1 presents lipid antigens suggest that defects in these mechanisms could contribute to the activities of CD1-reactive T cells. Thus, improving our understanding of these mechanisms could lead to new and effective therapeutic approaches to CD1-associated diseases. In this review, we discuss the CD1-mediated antigen presentation system and its roles in mucosal tissue immunity.


Subject(s)
Antigen Presentation , Lipids , Antigens, CD1/physiology , T-Lymphocytes , Antigens , Mucous Membrane
7.
Int J Mol Sci ; 24(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37175778

ABSTRACT

Glaucoma is one of the most devastating eye diseases, since the disease can develop into blindness and no effective therapeutics are available. Although the exact mechanisms and causes of glaucoma are unknown, increased intraocular pressure (IOP) has been demonstrated to be an important risk factor. Exosomes are lipid nanoparticles secreted from functional cells, including stem cells, and have been found to contain diverse functional molecules that control body function, inhibit inflammation, protect and regenerate cells, and restore damaged tissues. In the present study, exosome-rich conditioned media (ERCMs) were attained via hypoxic culture (2% O2) of human amniotic membrane mesenchymal stem cells (AMMSCs) and amniotic membrane epithelial stem cells (AMESCs) containing 50 times more exosome particles than normoxic culture (20% O2) medium (NCM). The exosome particles in ERCM were confirmed to be 77 nm in mean size and contain much greater amounts of growth factors (GFs) and neurotrophic factors (NFs) than those in NCM. The glaucoma-therapeutic effects of ERCMs were assessed in retinal cells and a hypertonic (1.8 M) saline-induced high-IOP animal model. CM-DiI-labeled AMMSC exosomes were found to readily penetrate the normal and H2O2-damaged retinal ganglion cells (RGCs), and AMMSC-ERCM not only facilitated retinal pigment epithelial cell (RPEC) proliferation but also protected against H2O2- and hypoxia-induced RPEC insults. The IOP of rats challenged with 1.8 M saline increased twice the normal IOP (12-17 mmHg) in a week. However, intravitreal injection of AMMSC-ERCM or AMESC-ERCM (3.9-4.5 × 108 exosomes in 10 µL/eye) markedly recovered the IOP to normal level in 2 weeks, similar to the effect achieved with platelet-derived growth factor-AB (PDGF-AB, 1.5 µg), a reference material. In addition, AMMSC-ERCM, AMESC-ERCM, and PDGF-AB significantly reversed the shrinkage of retinal layers, preserved RGCs, and prevented neural injury in the glaucoma eyes. It was confirmed that stem cell ERCMs containing large numbers of functional molecules such as GFs and NFs improved glaucoma by protecting retinal cells against oxidative and hypoxic injuries in vitro and by recovering IOP and retinal degeneration in vivo. Therefore, it is suggested that stem cell ERCMs could be a promising candidate for the therapy of glaucoma.


Subject(s)
Exosomes , Glaucoma , Rats , Humans , Animals , Intraocular Pressure , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Exosomes/metabolism , Amnion/metabolism , Hydrogen Peroxide/metabolism , Glaucoma/metabolism , Retina/metabolism , Nerve Growth Factors/metabolism , Stem Cells/metabolism , Disease Models, Animal
8.
ACS Nano ; 17(12): 11087-11219, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37219021

ABSTRACT

Serious climate changes and energy-related environmental problems are currently critical issues in the world. In order to reduce carbon emissions and save our environment, renewable energy harvesting technologies will serve as a key solution in the near future. Among them, triboelectric nanogenerators (TENGs), which is one of the most promising mechanical energy harvesters by means of contact electrification phenomenon, are explosively developing due to abundant wasting mechanical energy sources and a number of superior advantages in a wide availability and selection of materials, relatively simple device configurations, and low-cost processing. Significant experimental and theoretical efforts have been achieved toward understanding fundamental behaviors and a wide range of demonstrations since its report in 2012. As a result, considerable technological advancement has been exhibited and it advances the timeline of achievement in the proposed roadmap. Now, the technology has reached the stage of prototype development with verification of performance beyond the lab scale environment toward its commercialization. In this review, distinguished authors in the world worked together to summarize the state of the art in theory, materials, devices, systems, circuits, and applications in TENG fields. The great research achievements of researchers in this field around the world over the past decade are expected to play a major role in coming to fruition of unexpectedly accelerated technological advances over the next decade.

9.
Adv Mater ; 35(26): e2300699, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36947827

ABSTRACT

The triboelectric series is a generally accepted method for describing the triboelectric effect. It provides a way to control the double face of the ubiquitous triboelectric effect: causes of unpredictable accidents and the resultant surface charge as energy sources. However, previous studies have been biased in solids despite being observed in liquids (liquid-solid contact electrification). Therefore, a liquid triboelectric series is necessary to be established to manipulate the liquid triboelectric effect according to the appropriate goal. In this study, a liquid triboelectric series is first established to describe the triboelectric properties of each liquid when contact electrification occurs with a solid surface. The liquid triboelectric series covers electrolytes, organic solvents, oxidants, and higher sugar alcohols. Common chemical groups can be derived from the liquid triboelectric series that hydroxyl groups enhance, and benzene groups suppress the liquid triboelectric effect. The results are demonstrated by the amplified efficiency of an energy harvester and particle contamination after surface washing. This study will play a pivotal role in understanding the liquid-solid contact electrification phenomenon and providing new perspectives on the applications of the liquid triboelectric effect.

10.
J Prosthet Dent ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36635136

ABSTRACT

STATEMENT OF PROBLEM: Three-dimensional (3D) printers should be capable of fabricating products with high accuracy for potential use in a wide range of dental applications. The trueness and surface characteristics of 3D-printed casts made with different technologies remain unclear. PURPOSE: The purpose of this in vitro study was to evaluate the trueness and surface characteristics of 4 types of dental casts printed using 6 different 3D printers. MATERIAL AND METHODS: Four dental casts prepared for intracoronal and extracoronal restorations were printed using 6 different 3D printers-2 printers of each printing technology (FDM: Creator, Lugo; DLP: D2, ND5100; SLA: Form 2, Form 3). The printed casts were scanned to obtain standard tessellation language (STL) data sets that were superimposed onto the reference to evaluate their trueness (n=15). Trueness was measured based on overall deviations for each cast and for sectional deviations within the cavities. For qualitative evaluation, the surface characteristics of the 3D-printed casts were analyzed by using a digital camera, stereomicroscope, and scanning electron microscope. Statistical analyses were conducted using the Kruskal-Wallis test, followed by multiple Mann-Whitney U tests for pairwise comparisons among groups (α=.05). RESULTS: The overall median trueness values were lowest with the Form 3 (27.9 µm), followed by the ND5100 (30.0 µm), Lugo (37.1 µm), D2 (41.4 µm), Form 2 (46.9 µm), and Creator (83.3 µm) (P<.05). Sectional deviations within the cavity were generally greater than overall deviation. Macroscopic and microscopic images showed that the reproduced casts had the smoothest surface with the SLA, followed by the DLP and FDM printers. Horizontal layers were more discernible with the FDM printer. CONCLUSIONS: The trueness of the 3D-printed casts was influenced by the type of tooth preparation and was printer dependent. Among the tested 3D printers, the Form 3 produced the most accurate casts, while the Creator produced the least accurate casts.

11.
J Prosthet Dent ; 129(1): 69-75, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35985854

ABSTRACT

STATEMENT OF PROBLEM: Despite the introduction of intraoral scanners (IOSs) with dual camera triangulation, only a few comparative clinical studies have evaluated their clinical performances in the digital workflow for cast-free restorations. PURPOSE: The purpose of this clinical trial was to assess the clinical efficacy of 2 different technology-based IOSs by evaluating the marginal and internal gaps of cast-free monolithic zirconia crowns fabricated by using a fully digital workflow. MATERIAL AND METHODS: A prospective randomized clinical trial was conducted in 35 participants requiring a single-unit restoration. One crown was fabricated from the scan data obtained with a confocal microscopy-based IOS (Group T), while the other was made with the scan data obtained from an IOS using dual camera triangulation (Group I). A replica technique was used to assess the marginal and internal gaps. The buccolingual and mesiodistal cross-sections were measured, and noninferiority trials were performed. RESULTS: A total of 39 teeth from 35 participants were restored with a single-unit crown. The marginal and axial wall gaps of the crowns in Group I was not inferior to that of the crowns in Group T (upper limit confidence interval [CI] <30). In contrast, the gap of the crowns at the line angle in Group T was inferior to that of the crowns in Group I (lower limit CI <-30). From an occlusal space perspective, the gap of the crowns in Group I was inferior to that of the crowns in Group T (upper limit CI >30). Twenty-five crowns were selected from Group I, and 14 crowns were selected from Group T for definitive placement. CONCLUSIONS: The marginal gap of the crown fabricated by using the scan data obtained from the dual camera triangulation-based IOS was noninferior to that obtained from the confocal microscopy-based IOS and was within the clinically applicable limit.


Subject(s)
Computer-Aided Design , Dental Prosthesis Design , Humans , Prospective Studies , Dental Marginal Adaptation , Dental Impression Technique , Crowns
12.
Cell Rep ; 41(6): 111598, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36351405

ABSTRACT

Classically activated pro-inflammatory macrophages are generated from naive macrophages by pro-inflammatory cues that dynamically reprogram their fuel metabolism toward glycolysis. This increases their intracellular reactive oxygen species (ROS) levels, which then activate the transcription and release of pro-inflammatory mediators. Our study on mice that lack methionine sulfoxide reductase (Msr)-B1 shows that the resulting partial loss of protein methionine reduction in pro-inflammatory macrophages creates a unique metabolic signature characterized by altered fuel utilization, including glucose and pyruvate. This change also associates with hyper-inflammation that is at least partly due to sustained oxidation of an exposed methionine residue (M44) on glyceraldehyde 3-phosphate dehydrogenase (GAPDH), thereby inducing GAPDH aggregation, inflammasome activation, and subsequent increased interleukin (IL)-1ß secretion. Since MsrB1-knockout mice exhibit increased susceptibility to lipopolysaccharide (LPS)-induced sepsis, the MsrB1-GAPDH axis may be a key molecular mechanism by which protein redox homeostasis controls the metabolic profile of macrophages and thereby regulates their functions.


Subject(s)
Macrophage Activation , Methionine Sulfoxide Reductases , Mice , Animals , Methionine Sulfoxide Reductases/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Methionine/metabolism
13.
Stem Cells Transl Med ; 11(10): 1072-1088, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36180050

ABSTRACT

Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery is still high due to pseudarthrosis. To promote successful fusion after surgery, stem cells with or without biomaterials were introduced; however, conventional 2D-culture environments have resulted in a considerable loss of the innate therapeutic properties of stem cells. Therefore, we conducted a preclinical study applying 3D-spheroids of human bone marrow-dewrived mesenchymal stem cells (MSCs) to a mouse spinal fusion model. First, we built a large-scale manufacturing platform for MSC spheroids, which is applicable to good manufacturing practice (GMP). Comprehensive biomolecular examinations, which include liquid chromatography-mass spectrometry and bioinformatics could suggest a framework of quality control (QC) standards for the MSC spheroid product regarding the identity, purity, viability, and potency. In our animal study, the mass-produced and quality-controlled MSC spheroids, either undifferentiated or osteogenically differentiated were well-integrated into decorticated bone of the lumbar spine, and efficiently improved angiogenesis, bone regeneration, and mechanical stability with statistical significance compared to 2D-cultured MSCs. This study proposes a GMP-applicable bioprocessing platform and QC directions of MSC spheroids aiming for their clinical application in spinal fusion surgery as a new bone graft substitute.


Subject(s)
Bone Substitutes , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Spinal Fusion , Animals , Mice , Humans , Spinal Fusion/methods , Mesenchymal Stem Cell Transplantation/methods , Bone Marrow , Osteogenesis , Biocompatible Materials , Recombinant Proteins
14.
Diagn Cytopathol ; 50(10): 482-490, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35907183

ABSTRACT

BACKGROUND: Although the incidence of cervical cancer has decreased since the 1980s in Korea, it remains high among the elderly women. This study evaluated the suitability of cervical cancer screening for elderly Korean women aged ≥65 years according to recommendations by the American Society of Cytopathology and American Society for Colposcopy and Cervical Pathology. METHODS: We retrospectively reviewed the records of patients who underwent cervical cancer screening, followed by liquid-based Pap test, human papillomavirus (HPV) test, and colposcopic punch biopsy at two academic hospitals from May 2008 to May 2018. The participants were divided into two groups <65 and ≥65 years old. Logistic regression analysis was performed to evaluate the association between cytology tests, HPV tests and the occurrence of high-risk lesions, ≥cervical intraepithelial neoplasia2 (CIN2). RESULTS: The mean patient age was 49.02 ± 15.437 (range 15-91) years. No patients aged <25 years showed atypical squamous cell-cannot exclude high grade (ASC-H), squamous cell carcinoma (SCC), or adenocarcinoma (ADC). The incidence of high-grade squamous intraepithelial lesion (HISL) (39.7%) and ≥CIN 3 (40.2%) was significantly higher in patients ≥65 years of age than in other age groups. However, patients ≥65 years showed increased HSIL and HPV negativity and ASC-H, HSIL, and HPV positivity in those with ≥CIN 2 (both p = .043). CONCLUSION: Korean women aged ≥65 years should undergo cervical cancer screening. The relevance of HPV or Cytology test alone or co-test for screening should be evaluated in this population.


Subject(s)
Carcinoma, Squamous Cell , Papillomavirus Infections , Squamous Intraepithelial Lesions , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Aged , Colposcopy , Early Detection of Cancer , Female , Humans , Papillomaviridae , Papillomavirus Infections/diagnosis , Papillomavirus Infections/epidemiology , Pregnancy , Retrospective Studies , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/epidemiology , Uterine Cervical Neoplasms/pathology , Vaginal Smears , Uterine Cervical Dysplasia/pathology
15.
Curr Opin Biotechnol ; 77: 102760, 2022 10.
Article in English | MEDLINE | ID: mdl-35908315

ABSTRACT

Increased awareness of the environmental and health concerns of consuming chemically synthesized products has led to a rising demand for natural products that are greener and more sustainable. Despite their importance, however, industrial-scale production of natural products has been challenging due to the low yield and high cost of the bioprocesses. To cope with this problem, systems metabolic engineering has been employed to efficiently produce natural products from renewable biomass. Here, we review the recent systems metabolic engineering strategies employed for enhanced production of value-added natural products, together with accompanying examples. Particular focus is set on systems-level engineering and cell physiology engineering strategies. Future perspectives are also discussed.


Subject(s)
Biological Products , Biomass , Fermentation , Metabolic Engineering
16.
Materials (Basel) ; 13(4)2020 Feb 15.
Article in English | MEDLINE | ID: mdl-32075240

ABSTRACT

Renewable energy harvesting technologies have been actively studied in recent years for replacing rapidly depleting energies, such as coal and oil energy. Among these technologies, the triboelectric nanogenerator (TENG), which is operated by contact-electrification, is attracting close attention due to its high accessibility, light weight, high shape adaptability, and broad applications. The characteristics of the contact layer, where contact electrification phenomenon occurs, should be tailored to enhance the electrical output performance of TENG. In this study, a portable imprinting device is developed to fabricate TENG in one step by easily tailoring the characteristics of the polydimethylsiloxane (PDMS) contact layer, such as thickness and morphology of the surface structure. These characteristics are critical to determine the electrical output performance. All parts of the proposed device are 3D printed with high-strength polylactic acid. Thus, it has lightweight and easy customizable characteristics, which make the designed system portable. Furthermore, the finger tapping-driven TENG of tailored PDMS contact layer with microstructures is fabricated and easily generates 350 V of output voltage and 30 µA of output current with a simple finger tapping motion-related biomechanical energy.

17.
Rice (N Y) ; 12(1): 36, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31089902

ABSTRACT

BACKGROUND: Bakanae disease is an important fungal disease caused by Gibberella fujikuroi. Incidence of rice bakanae disease creates serious problems in the foremost rice growing countries, and no rice variety has been found to be completely resistant to this disease. However, breeding rice varieties resistant to bakanae disease may be a cost-saving solution preferable to the application of fungicides. In this study, we aimed to determine the exact position and the candidate gene for qBK1, a major resistant quantitative trait locus (QTLs) for bakanae disease. RESULTS: The genotypes/phenotypes of recombinants selected from backcrossed recombinant inbred lines of two rice varieties, Shingwang (resistant) and Ilpum (susceptible), indicated that the locus qBK1, conferring resistance to bakanae disease in Shingwang, was delimited to a 35-kb interval delimited by InDel 18 (23.637 Mbp) and InDel 19-14 (23.672 Mbp). Sequence analysis of this 35-kb region revealed four candidate genes, LOC_Os01g41770, LOC_Os01g41780, LOC_Os01g41790, and LOC_Os01g41800. There were many non-synonymous SNPs in LOC_Os01g41770 and the transcript of LOC_Os01g41790 was early terminated in Shingwang, whereas there were no differences in both LOC_Os01g41780 and LOC_Os01g41800 sequences between Ilpum and Shingwang. Expression profiling of the four candidate genes showed the up-regulation of LOC_Os01g41770, LOC_Os01g41780, and LOC_Os01g41790 in Ilpum and of LOC_Os01g41800 in Shingwang after inoculation of G. fujikuroi. CONCLUSION: Utilization of marker-assisted selection (MAS) with a precise molecular marker on qBK1 could provide an effective tool for breeding rice varieties resistant to bakanae disease. To our knowledge, this is the first report on fine mapping and candidate gene approaches for identifying the gene for qBK1.

18.
Nanoscale ; 10(20): 9747-9751, 2018 May 24.
Article in English | MEDLINE | ID: mdl-29767206

ABSTRACT

Considering the environmental issues, it is essential to develop highly efficient and recyclable photocatalysts in purification systems. Conventional TiO2 nanoparticles have strong intrinsic oxidizing power and high surface area, but are difficult to collect after use and rarely absorb visible light, resulting in low photocatalytic efficiency under sunlight. Here we develop a new type of highly efficient and recyclable photocatalyst made of a three-dimensional (3D) nanostructured N-doped TiO2 monolith with enhanced visible light absorption. To prepare the sample, an ultrathin TiN layer (∼10 nm) was conformally coated using atomic layer deposition (ALD) on 3D nanostructured TiO2. Subsequent thermal annealing at low temperature (550 °C) converted TiN to anatase phase N-doped TiO2. The resulting 3D N-doped TiO2 showed ∼33% enhanced photocatalytic performance compared to pure 3D TiO2 of equivalent thickness under sunlight due to the reduced bandgap, from 3.2 eV to 2.75 eV through N-doping. The 3D N-doped TiO2 monolith could be easily collected and reused at least 5 times without any degradation in photocatalytic performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...