Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters











Publication year range
1.
JACS Au ; 4(7): 2539-2546, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39055145

ABSTRACT

A new topology previously unknown in metal-organic frameworks (MOFs) provides an important clue to uncovering a new series of polyhedral MOFs. We report a novel MOF crystallized in a parsimonious mep topology based on Frank-Kasper (FK) polyhedra. The distribution of angles in a tetrahedral arrangement (T-O-T) is crucial for the formation of FK polyhedra in mep topology. This finding led us to investigate the T-O-T angle distribution in related zeolites and zeolitic imidazolate frameworks (ZIFs). Unlike zeolites, it is extremely difficult to achieve high T-O-T angles in ZIFs, which prevents the formation of some FK topologies. Density functional theory (DFT) total energy calculations support a correlation between T-O-T angles and the feasibility of new tetrahedron-based FK frameworks. This result may lead to innovative ways of accessing new cellular topologies by simple chemical tweaking of T-O-T angles.

2.
Nat Commun ; 15(1): 1174, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331892

ABSTRACT

Although carboxylate-based frameworks are commonly used architectures in metal-organic frameworks (MOFs), liquid/glass MOFs have thus far mainly been obtained from azole- or weakly coordinating ligand-based frameworks. This is because strong coordination bonds of carboxylate ligands to metals block the thermal vitrification pathways of carboxylate-based MOFs. In this study, we present the example of carboxylate-based melt-quenched MOF glasses comprising Mg2+ or Mn2+ with an aliphatic carboxylate ligand, adipate. These MOFs have a low melting temperature (Tm) of 284 °C and 238 °C, respectively, compared to zeolitic-imidazolate framework (ZIF) glasses, and superior mechanical properties in terms of hardness and elastic modulus. The low Tm may be attributed to the flexibility and low symmetry of the aliphatic carboxylate ligand, which raises the entropy of fusion (ΔSfus), and the lack of crystal field stabilization energy on metal ions, reducing enthalpy of fusion (ΔHfus). This research will serve as a cornerstone for the integration of numerous carboxylate-based MOFs into MOF glasses.

3.
ACS Appl Mater Interfaces ; 16(1): 761-771, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38109301

ABSTRACT

A systematic study was performed to investigate the effect of the sintering temperature, sintering duration, and aluminum doping on the crystalline structure and ionic conductivity of the Li1+xAl1+xSi1-xO4 (LASO; x = 0-0.25) solid electrolyte. There was a strong indication that an increase in the sintering temperature and sintering time increased the ionic conductivity of the electrolyte. In particular, the doping concentration and composition ratio (Li1+xAl1+xSi1-xO4; x = 0-0.25) were found to be crucial factors for achieving high ionic conductivity. The sintering time of 18 h and lithium concentration influenced the lattice parameters of the LASO electrolyte, resulting in a significant improvement in ionic conductivity from 2.11 × 10-6 (for pristine LASO) to 1.07 × 10-5 S cm-1. An increase in the lithium concentration affected the stoichiometry, and it facilitated a smoother Li-ion transfer process since lithium served as an ion-conducting bridge between LASO grains.

4.
RSC Adv ; 13(27): 18960-18963, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37362602

ABSTRACT

The ignition delay time of the hypergolic ionic liquids, 1-ethyl-3-methylimidazolium dicyanamide [EMIM][C2N3] and 1,3-dimethyl imidazolium dicyandiamide [DMIM][C2N3], can be controlled to approximately 20 ms by adding 1-amino-4-methylpiperazine while keeping the vapor pressure below 1 torr at 298 K.

5.
Adv Sci (Weinh) ; 10(21): e2301311, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37178363

ABSTRACT

Water adsorption-driven heat transfer (AHT) technology has emerged as a promising solution to address crisis of the global energy consumption and environmental pollution of current heating and cooling processes. Hydrophilicity of water adsorbents plays a decisive role in these applications. This work reports an easy, green, and inexpensive approach to tuning the hydrophilicity of metal-organic frameworks (MOFs) by incorporating mixed linkers, isophthalic acid (IPA), and 3,5-pyridinedicarboxylic acid (PYDC), with various ratios in a series of Al-xIPA-(100-x)PYDC (x: feeding ratio of IPA) MOFs. The designed mixed-linkers MOFs show a variation of hydrophilicity along the fraction of the linkers. Representative compounds with a proportional mixed linker ratio denoted as KMF-2, exhibit an S-shaped isotherm, an excellent coefficient of performance of 0.75 (cooling) and 1.66 (heating) achieved with low driving temperature below 70 °C which offers capability to employ solar or industrial waste heat, remarkable volumetric specific energy capacity (235 kWh m-3 ) and heat-storage capacity (330 kWh m-3 ). The superiority of KMF-2 to IPA or PYDC-containing single-linker MOFs (CAU-10-H and CAU-10pydc, respectively) and most of benchmark adsorbents illustrate the effectiveness of the mixed-linker strategy to design AHT adsorbents with promising performance.

6.
Inorg Chem ; 62(15): 6065-6075, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37000130

ABSTRACT

A silicoaluminophosphate molecular sieve, CIT-16P, is synthesized using butane-1,4-bis(quinuclidinium) [(C7H13N)-(CH2)4-(NC7H13)]2+ dihydroxide (DiQ-C4-(OH)2) as an organic structure-directing agent (OSDA). Upon the removal of the OSDA, either by thermal treatment in air at temperatures exceeding 490 °C or by extended ozone treatment at 150 °C, CIT-16P transforms to SAPO-17 (ERI topology). The structure solution of CIT-16P in its as-synthesized form is obtained using a Rietveld refinement of the powder X-ray diffraction pattern. The primary composite building units (CBUs) of CIT-16P are highly distorted cancrinite (can) CBUs that transform into stable can units of the ERI-type framework as a result of the OSDA removal. The distortion of can CBU is maintained without transformation by the presence of tightly bound DiQ-C4 dications in the as-synthesized form of CIT-16P. The transformed material is characterized and evaluated as a catalyst in the methanol-to-olefins (MTO) reaction. The catalytic behavior of the formed SAPO-17 (Si/T-atom = 0.022) (T = Si + Al + P) at 400 °C and WHSV of 1.3 h-1 produces elevated C3+ olefin products (i.e., propylene, butenes, and pentenes) in early stages of the reaction. However, as the reaction proceeds, the C3+ fraction decreases in favor of more ethylene.

7.
Angew Chem Int Ed Engl ; 60(42): 22769-22775, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34180114

ABSTRACT

The analogy between single-atom catalysts (SACs) and molecular catalysts predicts that the specific catalytic activity of these systems is constant. We provide evidence that this prediction is not necessarily true. As a case in point, we show that the specific activity over ceria-supported single Pd atoms linearly increases with metal atom density, originating from the cumulative enhancement of CeO2 reducibility. The long-range electrostatic footprints (≈1.5 nm) around each Pd site overlap with each other as surface Pd density increases, resulting in an observed deviation from constant specific activity. These cooperative effects exhaust previously active O atoms above a certain Pd density, leading to their permanent removal and a consequent drop in reaction rate. The findings of our combined experimental and computational study show that the specific catalytic activity of reducible oxide-supported single-atom catalysts can be tuned by varying the surface density of single metal atoms.

8.
J Am Chem Soc ; 143(2): 925-933, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33410693

ABSTRACT

Electrocatalytic conversion of CO2 into value-added products offers a new paradigm for a sustainable carbon economy. For active CO2 electrolysis, the single-atom Ni catalyst has been proposed as promising from experiments, but an idealized Ni-N4 site shows an unfavorable energetics from theory, leading to many debates on the chemical nature responsible for high activity. To resolve this conundrum, here we investigated CO2 electrolysis of Ni sites with well-defined coordination, tetraphenylporphyrin (N4-TPP) and 21-oxatetraphenylporphyrin (N3O-TPP). Advanced spectroscopic and computational studies revealed that the broken ligand-field symmetry is the key for active CO2 electrolysis, which subordinates an increase in the Ni redox potential yielding NiI. Along with their importance in activity, ligand-field symmetry and strength are directly related to the stability of the Ni center. This suggests the next quest for an activity-stability map in the domain of ligand-field strength, toward a rational ligand-field engineering of single-atom Ni catalysts for efficient CO2 electrolysis.

9.
ACS Appl Mater Interfaces ; 13(1): 1723-1734, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33395245

ABSTRACT

Adsorption-driven heat transfer devices incorporating an efficient "adsorbent-water" working pair are attracting great attention as a green and sustainable technology to address the huge global energy demands for cooling and heating. Herein, we report the improved heat transfer performance of a defective Zr fumarate metal-organic framework (MOF) prepared in a water solvent (Zr-Fum HT). This material exhibits an S-shaped water sorption isotherm (P/P0 = 0.05-0.2), excellent working capacity (0.497 mLH2O mL-1MOF) under adsorption-driven cooling/chiller working conditions (Tadsorption(ads) = 30 °C, Tcondensation (con) = 30 °C, and Tdesorption(des) = 80 °C), very high coefficient of performances for both cooling (0.83) and heating (1.76) together with a relatively low driving temperature at 80 °C, a remarkable heat storage capacity (423.6 kW h m-3MOF), and an outstanding evaporation heat (343.8 kW h m-3MOF). The level of performance of the resultant Zr-Fum HT MOF is above those of all existing benchmark water adsorbents including MOF-801 previously synthesized in the N,N-dimethylformamide solvent under regeneration at 80 °C which is accessible from the solar source. This is coupled with many other decisive advantages including green synthesis and high proven chemical and mechanical robustness. The microscopic water adsorption mechanism of Zr-Fum HT at the origin of its excellent water adsorption performance was further explored computationally based on the construction of an atomistic defective model online with the experimental data gained from a subtle combination of characterization techniques.

10.
Chem Commun (Camb) ; 56(92): 14404-14407, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33146167

ABSTRACT

C-H arylation with heterogeneous palladium was investigated. The surface oxidation of Pd nanoparticles with a hypervalent iodine reagent, [Ph2I]BF4, resulted in the generation of Pd(ii)-aryl-oxo clusters, which were characterized as the crucial intermediate.

11.
Nat Commun ; 11(1): 5112, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33037229

ABSTRACT

Adsorption-driven heat transfer technology using water as working fluid is a promising eco-friendly strategy to address the exponential increase of global energy demands for cooling and heating purposes. Here we present the water sorption properties of a porous aluminum carboxylate metal-organic framework, [Al(OH)(C6H3NO4)]·nH2O, KMF-1, discovered by a joint computational predictive and experimental approaches, which exhibits step-like sorption isotherms, record volumetric working capacity (0.36 mL mL-1) and specific energy capacity (263 kWh m-3) under cooling working conditions, very high coefficient of performances of 0.75 (cooling) and 1.74 (heating) together with low driving temperature below 70 °C which allows the exploitation of solar heat, high cycling stability and remarkable heat storage capacity (348 kWh m-3). This level of performances makes this porous material as a unique and ideal multi-purpose water adsorbent to tackle the challenges of thermal energy storage and its further efficient exploitation for both cooling and heating applications.

12.
ACS Appl Mater Interfaces ; 12(25): 28484-28495, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32479043

ABSTRACT

Microporous 3D graphene-like carbons were synthesized in Faujasite (FAU)-, EMT-, and beta-zeolite templates using the recently developed Ca2+ ion-catalyzed synthesis method. The microporous carbons liberated from these large-pore zeolites (0.7-0.9 nm) retain the structural regularity of zeolite. FAU-, EMT-, and beta zeolite-templated carbons (ZTCs) with faithfully constructed pore diameters of 1.2, 1.1, and 0.9 nm, respectively, and very large Brunauer-Emmet-Teller areas (2700-3200 m2 g-1) were obtained. We have discovered that these schwarzite-like carbons exhibit preferential adsorption of ethane over ethylene at pressures in the range of 1-10 bar. The curved graphene structure, consisting of a diverse range of carbon polygons with a narrow pore size of ∼1 nm, provides abundant adsorption sites in micropores and retains its ethane selectivity at pressures up to 10 bar. After varying the oxygen content in the beta ZTC, the ethane and ethylene adsorption isotherms show that the separation ability is not significantly affected by surface oxygen groups. Based on these adsorption results, a breakthrough separation procedure using a C2H4/C2H6 gas mixture (9:1 molar ratio) is demonstrated to produce ethylene with a purity of 99.9%.

13.
Chem Asian J ; 14(11): 1945-1948, 2019 Jun 03.
Article in English | MEDLINE | ID: mdl-30957971

ABSTRACT

We present the formation of a nanobelt by self-assembly of ß-benzyl GABA (γ-aminobutyric acid). This simple γ-amino acid building block self-assembled to form a well-defined nanobelt in chloroform. The nanobelt showed distinct optical properties due to π-π interactions. This new-generation self-assembled single amino acid may serve as a template for functional nanomaterials.


Subject(s)
Nanostructures/chemistry , gamma-Aminobutyric Acid/chemistry , Amino Acids/chemistry , Microscopy, Electron, Scanning
14.
J Am Chem Soc ; 140(47): 16198-16205, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30383962

ABSTRACT

Carbon monoxide is widely known to poison Pt during heterogeneous catalysis owing to its strong donor-acceptor binding ability. Herein, we report a counterintuitive phenomenon of this general paradigm when the size of Pt decreases to an atomic level, namely, the CO-promoting Pt electrocatalysis toward hydrogen evolution reactions (HER). Compared to pristine atomic Pt catalyst, reduction current on a CO-modified catalyst increases significantly. Operando mass spectroscopy and electrochemical analyses demonstrate that the increased current arises due to enhanced H2 evolution, not additional CO reduction. Through structural identification of catalytic sites and computational analysis, we conclude that CO-ligation on the atomic Pt facilitates Hads formation via water dissociation. This counterintuitive effect exemplifies the fully distinct characteristics of atomic Pt catalysts from those of bulk Pt, and offers new insights for tuning the activity of similar classes of catalysts.

15.
J Am Chem Soc ; 140(23): 7101-7107, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29697259

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) attract much attention for applications to organic light-emitting diodes, field-effect transistors, and photovoltaic cells. The current synthetic approaches to PAHs involve high-temperature flash pyrolysis or complicated step-by-step organic reactions, which lead to low yields of PAHs. Herein, we report a facile and scalable synthesis of PAHs, which is carried out simply by flowing acetylene gas into zeolite under mild heating, typically at 400 °C and generates the products of 0.30 g g-1 zeolite. PAHs are synthesized via acetylene polymerization inside Ca2+-ion-exchanged Linde type A (LTA) zeolite, of which the α-cage puts a limit on the product molecular size as a confined-space nanoreactor. The resultant product after the removal of the zeolite framework exhibits brilliant white fluorescence emission in N-methylpyrrolidone solution. The product is separated into four different color emitters (violet, blue, green, and orange) by column chromatography. Detailed characterizations of the products by means of various spectroscopic methods and mainly mass spectrometric analyses indicate that coronene (C24H12) is the main component of the blue emitter, while the green emitter is a mixture of planar and curved PAHs. The orange can be attributed to curved PAHs larger than ovalene, and the violet to smaller molecules than coronene. The PAH growth mechanism inside Ca2+-exchanged LTA zeolite is proposed on the basis of mass spectral analyses and density functional theory calculations.

16.
Angew Chem Int Ed Engl ; 56(24): 6952-6956, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28504411

ABSTRACT

Controlled oxidation of palladium nanoparticles provided high-valent PdIV oxo-clusters which efficiently promote directed C-H halogenation reactions. In addition, palladium nanoparticles can undergo changes in oxidation states to provide both high-valent PdIV and low-valent Pd0 species within one system, and thus a tandem reaction of C-H halogenation and cross-coupling (C-N, C-C, and C-S bond formation) was successfully established.

17.
Chem Commun (Camb) ; 53(2): 384-387, 2016 12 22.
Article in English | MEDLINE | ID: mdl-27942627

ABSTRACT

Rh(0)/Rh(iii) core-shell nanoparticles were prepared by surface oxidation of Rh nanoparticles with N-bromosuccinimide. They were employed as heterogeneous catalysts for cyclic carbonate synthesis from propylene oxide and CO2, and exhibited high activity and excellent recyclability due to Lewis acidic Rh(iii) species on the shells.

18.
Nature ; 535(7610): 131-5, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27362224

ABSTRACT

Three-dimensional graphene architectures with periodic nanopores­reminiscent of zeolite frameworks­are of topical interest because of the possibility of combining the characteristics of graphene with a three-dimensional porous structure. Lately, the synthesis of such carbons has been approached by using zeolites as templates and small hydrocarbon molecules that can enter the narrow pore apertures. However, pyrolytic carbonization of the hydrocarbons (a necessary step in generating pure carbon) requires high temperatures and results in non-selective carbon deposition outside the pores. Here, we demonstrate that lanthanum ions embedded in zeolite pores can lower the temperature required for the carbonization of ethylene or acetylene. In this way, a graphene-like carbon structure can be selectively formed inside the zeolite template, without carbon being deposited at the external surfaces. X-ray diffraction data from zeolite single crystals after carbonization indicate that electron densities corresponding to carbon atoms are generated along the walls of the zeolite pores. After the zeolite template is removed, the carbon framework exhibits an electrical conductivity that is two orders of magnitude higher than that of amorphous mesoporous carbon. Lanthanum catalysis allows a carbon framework to form in zeolite pores with diameters of less than 1 nanometre; as such, microporous carbon nanostructures can be reproduced with various topologies corresponding to different zeolite pore sizes and shapes. We demonstrate carbon synthesis for large-pore zeolites (FAU, EMT and beta), a one-dimensional medium-pore zeolite (LTL), and even small-pore zeolites (MFI and LTA). The catalytic effect is a common feature of lanthanum, yttrium and calcium, which are all carbide-forming metal elements. We also show that the synthesis can be readily scaled up, which will be important for practical applications such as the production of lithium-ion batteries and zeolite-like catalyst supports.

19.
Nat Commun ; 7: 10922, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26952517

ABSTRACT

Maximum atom efficiency as well as distinct chemoselectivity is expected for electrocatalysis on atomically dispersed (or single site) metal centres, but its realization remains challenging so far, because carbon, as the most widely used electrocatalyst support, cannot effectively stabilize them. Here we report that a sulfur-doped zeolite-templated carbon, simultaneously exhibiting large sulfur content (17 wt% S), as well as a unique carbon structure (that is, highly curved three-dimensional networks of graphene nanoribbons), can stabilize a relatively high loading of platinum (5 wt%) in the form of highly dispersed species including site isolated atoms. In the oxygen reduction reaction, this catalyst does not follow a conventional four-electron pathway producing H2O, but selectively produces H2O2 even over extended times without significant degradation of the activity. Thus, this approach constitutes a potentially promising route for producing important fine chemical H2O2, and also offers opportunities for tuning the selectivity of other electrochemical reactions on various metal catalysts.

20.
Chemistry ; 22(12): 3971-5, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26781522

ABSTRACT

The chirality found in living organisms is one of unsolved mysteries on Earth. It is crucial to understand the manner in which small achiral molecules evolve into helical superstructures in the absence of chiral components because this process can provide important insights regarding the origin of chirality in nature. 1) the uncommon helical assembly of an achiral trigonal chromophore into helical nanostructures with aggregation-induced emission enhancement (AIEE) characteristics and 2) the tunability of the helical pitch and fluorescence intensity in response to light is reported. The Rietveld refinement of X-ray diffraction (XRD) patterns and the growth process suggest that a striking transformation from an achiral to an asymmetric molecule can occur as a result of specific interactions with certain solvents, presumably leading to the unique helical assembly. More importantly, exposure to UV or visible light promoted not only the formation of irregular helical structures with a wide range of pitch lengths but also an increase in fluorescence intensity.

SELECTION OF CITATIONS
SEARCH DETAIL