Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Korean J Fam Med ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38523421

ABSTRACT

Background: Despite the increasing prevalence of anxiety disorders in Korea, there have been no nationwide studies on the association between tobacco status and generalized anxiety disorder (GAD). Furthermore, despite the increasing number of people using noncombustible nicotine or tobacco products (NNTPs), the association between NNTP use and GAD remains unclear. Therefore, this study investigated the association between tobacco use and GAD. Methods: This nationwide study used data from the 8th Korea National Health and Nutrition Examination Survey (2021) and included 5,454 adults aged ≥19 years who self-reported on the tobacco use and mental health sections. Multivariable logistic regression analysis was performed to investigate the odds ratios (ORs) of GAD (Generalized Anxiety Disorder-7 score ≥10) according to tobacco status among Korean adults. The severity of anxiety was assessed using the Generalized Anxiety Disorder-7 scale. Results: Compared to never tobacco users, the ORs of GAD for combustible cigarette smokers and NNTP users were 2.74 (95% confidence interval [CI], 1.66-4.50) and 2.11 (95% CI, 1.16-3.83), respectively. The OR of GAD for former tobacco users was 1.63 (95% CI, 0.98-2.72). Conclusion: Tobacco use (combustible cigarettes and NNTP) was positively associated with GAD. However, in former tobacco users, there was no significant association with GAD when compared with never tobacco users. Given the OR of GAD among tobacco users, it is crucial to pay attention to screening for GAD and implement appropriate early interventions.

2.
PLoS One ; 14(7): e0219483, 2019.
Article in English | MEDLINE | ID: mdl-31318905

ABSTRACT

Hypoxia is an important cause of acute kidney injury (AKI) in various conditions because kidneys are one of the most susceptible organs to hypoxia. In this study, we investigated whether nicotinamide adenine dinucleotide 3-phosphate (NADPH) oxidase 4 (Nox4) plays a role in hypoxia induced AKI in a cellular and animal model. Expression of Nox4 in cultured human renal proximal tubular epithelial cells (HK-2) was significantly increased by hypoxic stimulation. TGF-ß1 was endogenously secreted by hypoxic HK-2 cells. SB4315432 (a TGF-ß1 receptor I inhibitor) significantly inhibited Nox4 expression in HK-2 cells through the Smad-dependent cell signaling pathway. Silencing of Nox4 using Nox4 siRNA and pharmacologic inhibition with GKT137831 (a specific Nox1/4 inhibitor) reduced the production of ROS and attenuated the apoptotic pathway. In addition, knockdown of Nox4 increased cell survival in hypoxic HK-2 cells and pretreatment with GKT137831 reproduce these results. This study demonstrates that hypoxia induces HK-2 cell apoptosis through a signaling pathway involving TGF-ß1 via Smad pathway induction of Nox4-dependent ROS generation. In an ischemia/reperfusion rat model, pretreatment of GKT137831 attenuated ischemia/reperfusion induced acute kidney injury as indicated by preserved kidney function, attenuated renal structural damage and reduced apoptotic cells. Therapies targeting Nox4 may be effective against hypoxia-induced AKI.


Subject(s)
Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , NADPH Oxidase 4/metabolism , Signal Transduction , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism , Acute Kidney Injury/physiopathology , Animals , Apoptosis/drug effects , Cell Hypoxia/drug effects , Cell Line , Cell Survival/drug effects , Female , Humans , Kidney Function Tests , MAP Kinase Signaling System/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , NADPH Oxidase 4/antagonists & inhibitors , Oxidation-Reduction , Oxidative Stress/drug effects , Pyrazoles/pharmacology , Pyrazolones , Pyridines/pharmacology , Pyridones , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta1/pharmacology
3.
PLoS One ; 13(1): e0191034, 2018.
Article in English | MEDLINE | ID: mdl-29329317

ABSTRACT

Contrast-induced acute kidney injury (CIAKI) is a leading cause of acute kidney injury following radiographic procedures. Intrarenal oxidative stress plays a critical role in CIAKI. Nicotinamide adenine dinucleotide 3-phosphate (NADPH) oxidases (Noxs) are important sources of reactive oxygen species (ROS). Among the various types of Noxs, Nox4 is expressed predominantly in the kidney in rodents. Here, we evaluated the role of Nox4 and benefit of Nox4 inhibition on CIAKI using in vivo and in vitro models. HK-2 cells were treated with iohexol, with or without Nox4 knockdown, or the most specific Nox1/4 inhibitor (GKT137831). Effects of Nox4 inhibition on CIAKI mice were examined. Expression of Nox4 in HK-2 cells was significantly increased following iohexol exposure. Silencing of Nox4 rescued the production of ROS, downregulated pro-inflammatory markers (particularly phospho-p38) implicated in CIAKI, and reduced Bax and caspase 3/7 activity, which resulted in increased cellular survival in iohexol-treated HK-2 cells. Pretreatment with GKT137831 replicated these effects by decreasing levels of phospho-p38. In a CIAKI mouse model, even though the improvement of plasma blood urea nitrogen was unclear, pretreatment with GKT137831 resulted in preserved structure, reduced expression of 8-hydroxy-2'-deoxyguanosine (8OHdG) and kidney injury molecule-1 (KIM-1), and reduced number of TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling)-positive cells. These results suggest Nox4 as a key source of reactive oxygen species responsible for CIAKI and provide a novel potential option for prevention of CIAKI.


Subject(s)
Acute Kidney Injury/metabolism , Contrast Media/adverse effects , NADPH Oxidase 4/metabolism , Oxidative Stress , Acute Kidney Injury/chemically induced , Animals , Apoptosis/drug effects , Cell Line , Enzyme Activation , Gene Silencing , Humans , Iohexol/pharmacology , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Male , Mice , Mice, Inbred C57BL , NADPH Oxidase 4/genetics , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Superoxides/metabolism
4.
J Antimicrob Chemother ; 73(4): 962-972, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29329393

ABSTRACT

Background: Colistin (polymyxin E) is an important constituent of the polymyxin class of cationic polypeptide antibiotics. Intrarenal oxidative stress can contribute to colistin-induced nephrotoxicity. Nicotinamide adenine dinucleotide 3-phosphate oxidases (Noxs) are important sources of reactive oxygen species. Among the various types of Noxs, Nox4 is predominantly expressed in the kidney. Objectives: We investigated the role of Nox4 and benefit of Nox4 inhibition in colistin-induced acute kidney injury using in vivo and in vitro models. Methods: Human proximal tubular epithelial (HK-2) cells were treated with colistin with or without NOX4 knockdown, or GKT137831 (most specific Nox1/4 inhibitor). Effects of Nox4 inhibition on colistin-induced acute kidney injury model in Sprague-Dawley rats were examined. Results: Nox4 expression in HK-2 cells significantly increased following colistin exposure. SB4315432 (transforming growth factor-ß1 receptor I inhibitor) significantly inhibited Nox4 expression in HK-2 cells. Knockdown of NOX4 transcription reduced reactive oxygen species production, lowered the levels of pro-inflammatory markers (notably mitogen-activated protein kinases) implicated in colistin-induced nephrotoxicity and attenuated apoptosis by altering Bax and caspase 3/7 activity. Pretreatment with GKT137831 replicated these effects mediated by downregulation of mitogen-activated protein kinase activities. In a rat colistin-induced acute kidney injury model, administration of GKT137831 resulted in attenuated colistin-induced acute kidney injury as indicated by attenuated impairment of glomerulus function, preserved renal structures, reduced expression of 8-hydroxyguanosine and fewer apoptotic cells. Conclusions: Collectively, these findings identify Nox4 as a key source of reactive oxygen species responsible for kidney injury in colistin-induced nephrotoxicity and highlight a novel potential way to treat drug-related nephrotoxicity.


Subject(s)
Acute Kidney Injury/chemically induced , Anti-Bacterial Agents/adverse effects , Colistin/adverse effects , NADPH Oxidase 4/metabolism , Oxidative Stress , Transforming Growth Factor beta/metabolism , Animals , Cell Line , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/physiology , Humans , Models, Biological , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...