Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(50): 58367-58376, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38079499

ABSTRACT

Halide solid electrolytes (SEs) have been highlighted for their high-voltage stability. Among the halide SEs, the ionic conductivity has been improved by aliovalent metal substitutions or choosing a ccp-like anion-arranged monoclinic structure (C2/m) over hcp- or bcc-like anion-arranged structures. Here, we present a new approach, hard-base substitution, and its underlying mechanism to increase the ionic conductivity of halide SEs. The oxygen substitution to Li2ZrCl6 (trigonal, hcp) increased the ionic conductivity from 0.33 to 1.3 mS cm-1 at Li3.1ZrCl4.9O1.1 (monoclinic, ccp), while the sulfur and fluorine substitutions were not effective. A systematic comparison study revealed that the energetic stabilization of interstitial sites for Li migration plays a key role in improving the ionic conductivity, and the ccp-like anion sublattice is not sufficient to achieve high ionic conductivity. We further examined the feasibility of the oxyhalide SE for practical and all-solid-state battery applications.

2.
ACS Nano ; 17(16): 15931-15941, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37548961

ABSTRACT

For realizing all-solid-state batteries (ASSBs), it is highly desirable to develop a robust solid electrolyte (SE) that has exceptional ionic conductivity and electrochemical stability at room temperature. While argyrodite-type Li6PS5Cl (LPSCl) SE has garnered attention for its relatively high ionic conductivity (∼3.19 × 10-3 S cm-1), it tends to emit hydrogen sulfide (H2S) in the presence of moisture, which can hinder the performance of ASSBs. To address this issue, researchers are exploring approaches that promote structural stability and moisture resistance through elemental doping or substitution. Herein, we suggest using zeolite imidazolate framework-8 as a moisture absorbent in LPSCl without modifying the structure of the SE or the electrode configuration. By incorporating highly ordered porous materials, we demonstrate that ASSBs configured with LPSCl SE display stable cyclability due to effective and long-lasting moisture absorption. This approach not only improves the overall quality of ASSBs but also lays the foundation for developing a moisture-resistant sulfide electrolyte.

3.
ACS Appl Mater Interfaces ; 15(8): 10744-10751, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36787511

ABSTRACT

This study validates the beneficial role of residual Li compounds on the surface of Ni-rich cathode materials (LiNixCoyMnzO2, NCM). Residual Li compounds on Ni-rich NCM are naturally formed during the synthesis procedure, which degrades the initial Coulombic efficiency and generates slurry gelation during electrode fabrication in Li-ion batteries (LIBs) using liquid electrolytes. To solve this problem, washing pretreatment is usually introduced to remove residual Li compounds on the NCM surface. In contrast to LIBs, we found that residual Li compounds can serve as a functional layer that suppresses the interfacial side reactions of the NCM in all-solid-state batteries (ASSBs). The formation of resistive phosphate-based compounds from the undesirable side reaction during the initial charging step is suppressed by the residual Li compounds on the surface of the NCM, thereby reducing polarization growth in ASSBs and enhancing rate performances. The advantageous effects of the intrinsic residual Li compounds on the NCM surface suggest that the essential washing process of the NCM for the liquid-based LIB system should be reconsidered for ASSB systems.

4.
Adv Sci (Weinh) ; 10(5): e2204942, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36507619

ABSTRACT

Compared with conventional liquid electrolytes, solid electrolytes can better improve the safety properties and achieve high-energy-density Li-ion batteries. Sulfide-based solid electrolytes have attracted significant attention owing to their high ionic conductivities, which are comparable to those of their liquid counterparts. Among them, Li thiophosphates, including Li-argyrodites, are widely studied. In this study, Li thiophosphate solid electrolytes containing BH4 - anions are prepared via a simple and fast milling method even without heat treatment. The synthesized materials exhibit a high ionic conductivity of up to 11 mS cm-1 at 25 °C, which is much higher than reported values. To elucidate the mechanism behind, the thiophosphate local structure, whose effect on the ionic conductivity remains unclear to date, is investigated. Raman and solid-state NMR spectroscopies are performed to identify the thiophosphate local structure in the sulfide samples. Based on the analysis results, the ratios of the different thiophosphate units in the prepared electrolyte samples are determined. It is found that the thiophosphate local structure can be varied by changing the amount of LiBH4 and the milling conditions, which significantly impact the ionic conductivity. The all-solid-state cell with the prepared solid electrolyte exhibits superior cycle and rate performances.

5.
Adv Mater ; 34(16): e2200083, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35196412

ABSTRACT

The wet-chemical processability of sulfide solid electrolytes (SEs) provides intriguing opportunities for all-solid-state batteries. Thus far, sulfide SEs are wet-prepared either from solid precursors suspended in solvents (suspension synthesis) or from homogeneous solutions using SEs (solution process) with restricted composition spaces. Here, a universal solution synthesis method for preparing sulfide SEs from precursors, not only Li2 S, P2 S5 , LiCl, and Na2 S, but also metal sulfides (e.g., GeS2 and SnS2 ), fully dissolved in an alkahest: a mixture solvent of 1,2-ethylenediamine (EDA) and 1,2-ethanedithiol (EDT) (or ethanethiol). Raman spectroscopy and theoretical calculations reveal that the exceptional dissolving power of EDA-EDT toward GeS2 is due to the nucleophilicity of the thiolate anions that is strong enough to dissociate the GeS bonds. Solution-synthesized Li10 GeP2 S12 , Li6 PS5 Cl, and Na11 Sn2 PS12 exhibit high ionic conductivities (0.74, 1.3, and 0.10 mS cm-1 at 30 °C, respectively), and their application for all-solid-state batteries is successfully demonstrated.

6.
Biology (Basel) ; 10(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34943179

ABSTRACT

Globally, the cultivation area of genetically modified (GM) crops is increasing dramatically. Despite their well-known benefits, they may also pose many risks to agriculture and the environment. Among the various GM crops, GM rapeseed (Brassica napus L.) is widely cultivated, mainly for oil production. At the same time, B. napus possesses a number of characteristics, including the ability to form feral populations and act as small-seeded weeds, and has a high potential for hybridization with other species. In this review, we provide an overview of the commercialization, approval status, and cultivation of GM rapeseed, as well as the status of the feral rapeseed populations. In addition, we highlight the case studies on the unintentional environmental release of GM rapeseed during transportation in several countries. Previous studies suggest that the main reason for the unintentional release is seed spillage during transport/importing of rapeseed in both GM rapeseed-cultivating and -non-cultivating countries. Despite the fact that incidents of unintentional release have been recorded often, there have been no reports of serious detrimental consequences. However, since rapeseed has a high potential for hybridization, the possibilities of gene flow within the genus, especially with B. rapa, are relatively significant, and considering their weedy properties, effective management methods are needed. Hence, we recommend that specific programs be used for the effective monitoring of environmental releases of GM rapeseed as well as management to avoid environmental and agricultural perturbations.

7.
Genes (Basel) ; 12(10)2021 10 09.
Article in English | MEDLINE | ID: mdl-34680989

ABSTRACT

Low temperature is a critical environmental factor restricting the physiology of organisms across kingdoms. In prokaryotes, cold shock induces the expression of various genes and proteins involved in cellular processes. Here, a cold-shock protein (ArCspA) from the South Pole-dwelling soil bacterium Arthrobacter sp. A2-5 was introduced into rice, a monocot model plant species. Four-week-old 35S:ArCspA transgenic rice plants grown in a cold chamber at 4 °C survived for 6 days. Cold stress significantly decreased the chlorophyll content in WT plants after 4 days compared with that in 35S:ArCspA transgenic plants. RNA-seq analysis was performed on WT and 35S:ArCspA transgenic rice with/without cold stress. GO terms such as "response to stress (GO:0006950)", "response to cold (GO:0009409)", and "response to heat (GO:0009408)" were significantly enriched among the upregulated genes in the 35S:ArCspA transgenic rice under normal conditions, even without cold-stress treatment. The expression of five cold stress-related genes, Rab16B (Os11g0454200), Rab21 (Os11g0454300), LEA22 (Os01g0702500), ABI5 (Os01 g0859300), and MAPK5 (Os03g0285800), was significantly upregulated in the transgenic rice compared with the WT rice. These results indicate that the ArCspA gene might be involved in the induction of cold-responsive genes and provide cold tolerance.


Subject(s)
Adaptation, Physiological , Arthrobacter/metabolism , Cold Shock Proteins and Peptides/physiology , Cold Temperature , Oryza/physiology , Soil Microbiology , Antarctic Regions , Cold Shock Proteins and Peptides/isolation & purification , Oryza/microbiology , Plant Proteins/genetics , Plants, Genetically Modified
8.
Int J Mol Sci ; 22(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34576101

ABSTRACT

Near-infrared spectroscopy (NIRS) has become a more popular approach for quantitative and qualitative analysis of feeds, foods and medicine in conjunction with an arsenal of chemometric tools. This was the foundation for the increased importance of NIRS in other fields, like genetics and transgenic monitoring. A considerable number of studies have utilized NIRS for the effective identification and discrimination of plants and foods, especially for the identification of genetically modified crops. Few previous reviews have elaborated on the applications of NIRS in agriculture and food, but there is no comprehensive review that compares the use of NIRS in the detection of genetically modified organisms (GMOs). This is particularly important because, in comparison to previous technologies such as PCR and ELISA, NIRS offers several advantages, such as speed (eliminating time-consuming procedures), non-destructive/non-invasive analysis, and is inexpensive in terms of cost and maintenance. More importantly, this technique has the potential to measure multiple quality components in GMOs with reliable accuracy. In this review, we brief about the fundamentals and versatile applications of NIRS for the effective identification of GMOs in the agricultural and food systems.


Subject(s)
Plants, Genetically Modified/physiology , Spectroscopy, Near-Infrared , Crops, Agricultural/physiology , Food
9.
Int J Mol Sci ; 22(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070397

ABSTRACT

Bacterial communities in rhizosphere and root nodules have significant contributions to the growth and productivity of the soybean (Glycine max (L.) Merr.). In this report, we analyzed the physiological properties and dynamics of bacterial community structure in rhizosphere and root nodules at different growth stages using BioLog EcoPlate and high-throughput sequencing technology, respectively. The BioLog assay found that the metabolic capability of rhizosphere is in increasing trend in the growth of soybeans as compared to the bulk soil. As a result of the Illumina sequencing analysis, the microbial community structure of rhizosphere and root nodules was found to be influenced by the variety and growth stage of the soybean. At the phylum level, Actinobacteria were the most abundant in rhizosphere at all growth stages, followed by Alphaproteobacteria and Acidobacteria, and the phylum Bacteroidetes showed the greatest change. But, in the root nodules Alphaproteobacteria were dominant. The results of the OTU analysis exhibited the dominance of Bradyrhizobium during the entire stage of growth, but the ratio of non-rhizobial bacteria showed an increasing trend as the soybean growth progressed. These findings revealed that bacterial community in the rhizosphere and root nodules changed according to both the variety and growth stages of soybean in the field.


Subject(s)
Bacteria , Glycine max , Plant Root Nodulation , Plant Roots , Rhizosphere , Soil Microbiology , Bacteria/classification , Bacteria/growth & development , Plant Roots/growth & development , Plant Roots/microbiology , Glycine max/growth & development , Glycine max/microbiology
10.
Genes (Basel) ; 12(5)2021 04 25.
Article in English | MEDLINE | ID: mdl-33923067

ABSTRACT

In plants, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a main enzyme in the glycolytic pathway. It plays an essential role in glycerolipid metabolism and response to various stresses. To examine the function of PsGAPDH (Pleurotus sajor-caju GAPDH) in response to abiotic stress, we generated transgenic rice plants with single-copy/intergenic/homozygous overexpression PsGAPDH (PsGAPDH-OX) and investigated their responses to salinity stress. Seedling growth and germination rates of PsGAPDH-OX were significantly increased under salt stress conditions compared to those of the wild type. To elucidate the role of PsGAPDH-OX in salt stress tolerance of rice, an Illumina HiSeq 2000 platform was used to analyze transcriptome profiles of leaves under salt stress. Analysis results of sequencing data showed that 1124 transcripts were differentially expressed. Using the list of differentially expressed genes (DEGs), functional enrichment analyses of DEGs such as Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed. KEGG pathway enrichment analysis revealed that unigenes exhibiting differential expression were involved in starch and sucrose metabolism. Interestingly, trehalose-6-phosphate synthase (TPS) genes, of which expression was enhanced by abiotic stress, showed a significant difference in PsGAPDH-OX. Findings of this study suggest that PsGAPDH plays a role in the adaptation of rice plants to salt stress.


Subject(s)
Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics , Oryza/genetics , Plant Proteins/genetics , Salt Stress , Transcriptome , Gene Expression Regulation, Plant , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Oryza/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Up-Regulation
11.
Phys Chem Chem Phys ; 23(9): 5438-5446, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33646232

ABSTRACT

In this study, we present improved power characteristics and suppressed phase transition by incorporating elemental doping into a P2-type cathode of sodium ion batteries. A Cu-doped Fe-Mn based P2-type Na0.67Cu0.125Fe0.375Mn0.5O2 cathode was designed based on the calculations of the electronic structure and then examined experimentally. Using first principles, we introduced instrinsic p-type conductivity by elemental doping with Cu. Introduction of Cu generated electron holes above the Fermi level in the electronic structure, which is typical of p-type semiconductors. Charge analyses suggested that the hole generation was driven primarily by the greater reduced characteristics of Cu as compared with those of Fe and Mn. In addition, introduction of Cu retaining high reduced property also suppressed phase transition from the P2 to Z phase by Fe migration to empty Na layers mainly. Electrochemical experiments revealed improved power characteristics upon the introduction of p-type conductivity. This could be attributed to the increase in the electronic conductivity by hole generation in the valence band. This study suggests that the introduction of p-type conductivity could be a rational tactic for the development of promising cathode materials for high performance sodium ion batteries.

12.
Small ; 17(9): e1902138, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31441230

ABSTRACT

An all-solid-state lithium battery based on a sulfide electrolyte is one of the most promising next-generation energy storage systems. However, the high interfacial impedance, particularly due to the internal pores in the electrode or electrolyte layers, is the major limiting factor to the development of sheet-type all-solid-state batteries. In this study, a low-resistance integrated all-solid composite electrode is developed using a hybrid of a pyrrolidinium-based ionic liquid and a polyethylene oxide polymer with lithium salt as a multifunctional interphase material, which is engineered to be compatible with the sulfide electrolyte as well as the fabrication process of sheet-type composite electrode. The interphase material fills the pore in the composite sheet while binding the components together, which effectively increases the interfacial contact area and strengthens the physical network between the components, thereby enabling enhanced ion transport throughout the electrode. The interphase-engineered sheet-type LiNi0.8 Co0.1 Mn0.1 O2 /Li10 GeP2 S12 electrode shows a high reversible capacity of 166 mAh g-1 at 25 °C, corresponding to 92% of the observed capacity in a current liquid-based cathode system, as well as enhanced cycle and rate performances. This study proposes a novel and practical method for the development of high-performance sheet-type all-solid-state lithium batteries.

13.
Front Plant Sci ; 12: 767826, 2021.
Article in English | MEDLINE | ID: mdl-35095949

ABSTRACT

GPD encodes glyceraldehyde-3-phosphate dehydrogenase enzyme involved in sugar mobilization, particularly glycolysis and gluconeogenesis. The objective of this study was to determine physiological aspects of germination and early seedling establishment of PsGPD (Pleurotus sajor-caju glyceraldehyde-3-phosphate dehydrogenase) expressing transgenic rice (T5) against different salt concentrations. The T5 line that carried 2 copies of T-DNA and had the highest level of PsGPD expression was used in the investigation. Final germination percentage, amylase activity, reducing sugar accumulation, and chlorophyll biosynthesis were comparatively higher in PsGPD expressing transgenic rice against elevating saline conditions. A slow-paced conversion of porphyrin's precursors was seen through the matrix model and further elaborated by a graphical model. A sustained level of porphyrin was observed in PsGPD expressing transgenic rice. These data were concurrent with the relative gene expression and thermal imaging (thermography) of PsGPD expressing transgenic rice against salt stress. Morphological attributes also favored the salt tolerance exhibited by PsGPD-transformed rice.

14.
Int J Mol Sci ; 23(1)2021 Dec 25.
Article in English | MEDLINE | ID: mdl-35008646

ABSTRACT

In recent years, the rapid development of genetically modified (GM) technology has raised concerns about the safety of GM crops and foods for human health and the ecological environment. Gene flow from GM crops to other crops, especially in the Brassicaceae family, might pose a threat to the environment due to their weediness. Hence, finding reliable, quick, and low-cost methods to detect and monitor the presence of GM crops and crop products is important. In this study, we used visible near-infrared (Vis-NIR) spectroscopy for the effective discrimination of GM and non-GM Brassica napus, B. rapa, and F1 hybrids (B. rapa X GM B. napus). Initially, Vis-NIR spectra were collected from the plants, and the spectra were preprocessed. A combination of different preprocessing methods (four methods) and various modeling approaches (eight methods) was used for effective discrimination. Among the different combinations, the Savitzky-Golay and Support Vector Machine combination was found to be an optimal model in the discrimination of GM, non-GM, and hybrid plants with the highest accuracy rate (100%). The use of a Convolutional Neural Network with Normalization resulted in 98.9%. The same higher accuracy was found in the use of Gradient Boosted Trees and Fast Large Margin approaches. Later, phenolic acid concentration among the different plants was assessed using GC-MS analysis. Partial least squares regression analysis of Vis-NIR spectra and biochemical characteristics showed significant correlations in their respective changes. The results showed that handheld Vis-NIR spectroscopy combined with chemometric analyses could be used for the effective discrimination of GM and non-GM B. napus, B. rapa, and F1 hybrids. Biochemical composition analysis can also be combined with the Vis-NIR spectra for efficient discrimination.


Subject(s)
Brassica napus/genetics , Brassica rapa/genetics , Hybridization, Genetic/genetics , Plants, Genetically Modified/genetics , Chemometrics/methods , Crops, Agricultural/genetics , Gene Flow/genetics , Machine Learning , Spectroscopy, Near-Infrared/methods
15.
Adv Mater ; 32(37): e2001702, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32767479

ABSTRACT

Sulfide-based all-solid-state batteries (ASSBs) have been featured as promising alternatives to the current lithium-ion batteries (LIBs) mainly owing to their superior safety. Nevertheless, a solution-based scalable manufacturing scheme has not yet been established because of the incompatible polarity of the binder, solvent, and sulfide electrolyte during slurry preparation. This dilemma is overcome by subjecting the acrylate (co)polymeric binders to protection-deprotection chemistry. Protection by the tert-butyl group allows for homogeneous dispersion of the binder in the slurry based on a relatively less polar solvent, with subsequent heat-treatment during the drying process to cleave the tert-butyl group. This exposes the polar carboxylic acid groups, which are then able to engage in hydrogen bonding with the active cathode material, high-nickel layered oxide. Deprotection strengthens the electrode adhesion such that the strength equals that of commercial LIB electrodes, and the key electrochemical performance parameters are improved markedly in both half-cell and full-cell settings. The present study highlights the potential of sulfide-based ASSBs for scalable manufacturing and also provides insights that protection-deprotection chemistry can generally be used for various battery cells that suffer from polarity incompatibility among multiple electrode components.

16.
ChemSusChem ; 13(1): 146-151, 2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31529683

ABSTRACT

All-solid-state lithium-ion batteries (ASLBs) employing sulfide solid electrolytes are attractive next-generation rechargeable batteries that could offer improved safety and energy density. Recently, wet syntheses or processes for sulfide solid electrolyte materials have opened opportunities to explore new materials and practical fabrication methods for ASLBs. A new wet-chemical route for the synthesis of Li-deficient Li3-x PS4 (0≤x≤0.3) has been developed, which is enabled by dual solvents. Owing to its miscibility with tetrahydrofuran and ability to dissolve elemental sulfur, o-xylene as a cosolvent facilitates the wet-chemical synthesis of Li3-x PS4 . Li3-x PS4 (0≤x≤0.15) derived by using dual solvents shows Li+ conductivity of approximately 0.2 mS cm-1 at 30 °C, in contrast to 0.034 mS cm-1 for a sample obtained by using a conventional single solvent (tetrahydrofuran, x=0.15). The evolution of the structure for Li3-x PS4 is also investigated by complementary analysis using X-ray diffraction, Raman, and X-ray photoelectron spectroscopy measurements. LiCoO2 /Li-In ASLBs employing Li2.85 PS4 obtained by using dual solvents exhibit a reversible capacity of 130 mA h g-1 with good cycle retention at 30 °C, outperforming cells with Li2.85 PS4 obtained by using a conventional single solvent.

17.
ACS Appl Mater Interfaces ; 11(34): 30894-30901, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31389688

ABSTRACT

Recently, the substitution of inactive elements has been reported as a promising strategy for improving the structural stability and electrochemical performance of layered cathode materials for sodium-ion batteries (SIBs). In this regard, we investigated the positive effects of inactive Ti substitution into O3-type NaFe0.25Ni0.25Mn0.5O2 based on first-principles calculations and electrochemical experiments. After Ti substitution, Na[Ti0.03(Fe0.25Ni0.25Mn0.5)0.97]O2 exhibits improved capacity retention and rate capability compared with Ti-free NaFe0.25Ni0.25Mn0.5O2. Such an improvement is primarily attributed to the enhanced structural stability and lowered activation energy for Na+ migration, which is induced by Ti substitution in the host structure. Based on first-principles calculations of the average net charges and partial densities of states, we suggest that Ti substitution effectively enhances the binding between transition metals and oxygen by increasing the oxygen electron density, which in turn lowers the energy barrier of Na+ migration, leading to a notable enhancement in the rate capability of Na[Ti0.03(Fe0.25Ni0.25Mn0.5)0.97]O2. Compared with other inactive elements (e.g., Al and Mg), Ti is a more suitable substituent for improving the electrochemical properties of layered cathode materials because of its large total charge variation contributing to capacity. The results of this study provide practical guidelines for developing highly reliable layered cathode materials for SIBs.

18.
ChemSusChem ; 12(12): 2637-2643, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-30895733

ABSTRACT

A potential solid electrolyte for realizing all-solid-state battery (ASB) technology has been discovered in the form of Li10 GeP2 S12 (LGPS), a lithium superionic conductor with a high ionic conductivity (≈12 mS cm-1 ). Unfortunately, the achievable Li+ conductivity of LGPS is limited in a sheet-type composite electrode owing to the porosity of this electrode structure. For the practical implementation of LGPS, it is crucial to control the pore structures of the composite electrode, as well as the interfaces between the active materials and solid- electrolyte particles. Herein, the addition of an ionic liquid, N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Py14 ][TFSI]), is proposed as a pore filler for constructing a highly reliable electrode structure using LGPS. [Py14 ][TFSI] is coated onto the surface of LGPS powder through a wet process and a sheet-type composite electrode is prepared using a conventional casting procedure. The [Py14 ][TFSI]-embedded composite electrode exhibits significantly improved reversible capacity and power characteristics. It is suggested that pore-filling with [Py14 ][TFSI] is effective for increasing contact areas and building robust interfaces between the active materials and solid-electrolyte particles, leading to the generation of additional Li+ pathways in the composite electrode of ASBs.

19.
ACS Appl Mater Interfaces ; 10(45): 38915-38921, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30335357

ABSTRACT

A facile Mn surface doping process is proposed to improve the thermal and structural stabilities of Ni-rich layered cathode materials (Ni ≥ 80%) for lithium-ion batteries in electric vehicles. Herein, we demonstrate that the surface structure of the Ni-rich layered cathode materials can be stabilized by the introduction of a thin Mn-rich surface layer. This layer effectively reduces the direct exposure of the highly reactive Ni on the surface of the cathode materials, thus enhancing thermal stability and mitigating side reactions associated with highly reactive Ni that causes the loss of reversible capacity. In practice, the Mn surface-doped Ni-rich layered cathode material exhibits a high specific capacity with an improved cycling stability even at a high temperature (60 °C). We believe that our simple approach offers more opportunities to upscale production without any extra caution.

20.
Nat Commun ; 7: 13598, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27886178

ABSTRACT

Lithium ion batteries are encountering ever-growing demand for further increases in energy density. Li-rich layered oxides are considered a feasible solution to meet this demand because their specific capacities often surpass 200 mAh g-1 due to the additional lithium occupation in the transition metal layers. However, this lithium arrangement, in turn, triggers cation mixing with the transition metals, causing phase transitions during cycling and loss of reversible capacity. Here we report a Li-rich layered surface bearing a consistent framework with the host, in which nickel is regularly arranged between the transition metal layers. This surface structure mitigates unwanted phase transitions, improving the cycling stability. This surface modification enables a reversible capacity of 218.3 mAh g-1 at 1C (250 mA g-1) with improved cycle retention (94.1% after 100 cycles). The present surface design can be applied to various battery electrodes that suffer from structural degradations propagating from the surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...