Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 87(4): 1230-1234, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38626456

ABSTRACT

Three new cyclic heptapeptides, talaromides A-C (1-3), were isolated from cultures produced by the fungus Talaromyces siglerae (Ascomycota), isolated from an unidentified sponge. The structures, featuring an unusual proline-anthranilic moiety, were elucidated by analysis of spectroscopic data and chemical transformations, including the advanced Marfey's method and GITC derivatization. Talaromides A and B inhibited migration activity against PANC-1 human pancreatic cancer cells without significant cytotoxicity.


Subject(s)
Peptides, Cyclic , Porifera , Talaromyces , Talaromyces/chemistry , Animals , Porifera/microbiology , Humans , Molecular Structure , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Drug Screening Assays, Antitumor , Marine Biology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification
2.
J Nat Prod ; 87(4): 976-983, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38438310

ABSTRACT

Three unique linear oligomeric depsipeptides, designated as cavomycins A-C (1-3), were identified from Streptomyces cavourensis, a gut bacterium associated with the annelid Paraleonnates uschakovi. The structures of these depsipeptides were determined through a combination of spectroscopic methods and chemical derivatization techniques, including methanolysis, the modified Mosher's method, advanced Marfey's methods, and phenylglycine methyl ester derivatization. The unique dipeptidyl residue arrangements in compounds 1-3 indicate that they are not degradation products of valinomycin. Compound 2 and its methylation derivative 2a exhibited antiproliferative activity against PANC-1 pancreatic cancer cells with IC50 values of 1.2 and 1.7 µM, respectively.


Subject(s)
Depsipeptides , Streptomyces , Streptomyces/chemistry , Depsipeptides/pharmacology , Depsipeptides/chemistry , Depsipeptides/isolation & purification , Humans , Molecular Structure , Animals , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification
3.
J Ethnopharmacol ; 319(Pt 3): 117285, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37839769

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ulmus macrocarpa Hance (UmH) bark has been traditionally utilized for medicinal purposes. The bark extract of this plant has diverse health benefits, and its potential role in enhancing bone health is of distinct interest, particularly when considering the substantial health and economic implications of bone-related pathologies, such as osteoporosis. Despite the compelling theoretical implications of UmH bark in fortifying bone health, no definitive evidence at the in vivo level is currently available, thus highlighting the innovative and as-yet-unexplored potential of this field of study. AIM OF THE STUDY: Primarily, our study aims to conduct a meticulous analysis of the disparity in the concentration of active compounds in the UmH root bark (Umrb) and trunk bark (Umtb) extracts and confirm UmH bark's efficacy in enhancing bone health in vivo, illuminating the cellular mechanisms involved. MATERIALS AND METHODS: The Umrb and Umtb extracts were subjected to component analysis using high-performance liquid chromatography and then assessed for their inhibitory effects on osteoclast differentiation through the TRAP assay. An ovariectomized (OVX) mouse model replicates postmenopausal conditions commonly associated with osteoporosis. Micro-CT was used to analyze bone structure parameters, and enzyme-linked immunosorbent assay and staining were used to assess bone formation markers and osteoclast activity. Furthermore, this study investigated the impact of the extract on the expression of pivotal proteins and genes involved in bone formation and resorption using mouse bone marrow-derived macrophages (BMMs). RESULTS: The findings of our study reveal a significant discrepancy in the concentration of active constituents between Umrb and Umtb, establishing Umtb as a superior source for promoting bone health. I addition, a standardized pilot-scale procedure was conducted for credibility. The bone health benefits of Umtb were verified using an OVX model. This validation involved the assessment of various parameters, including BMD, BV/TV, and BS/TV, using micro-CT imaging. Additionally, the activation of osteoblasts was evaluated by Umtb by measuring specific factors such as ALP, OCN, OPG in blood samples and through IHC staining. In the same investigations, diminished levels of osteoclast differentiation factors, such as TRAP, NFATc1, were also observed. The observed patterns exhibited consistency in vitro BMM investigations. CONCLUSIONS: Through verification at both in vitro levels using BMMs and in vivo levels using the OVX-induced mouse model, our research demonstrates that Umtb is a more effective means of improving bone health in comparison to Umrb. These findings pave the way for developing health-functional foods or botanical drugs targeting osteoporosis and other bone-related disorders and enhance the prospects for future research extensions, including clinical studies, in extract applications.


Subject(s)
Osteoporosis , Ulmus , Female , Humans , Animals , Mice , Osteoclasts , Plant Bark , Osteoporosis/prevention & control , Disease Models, Animal , Ovariectomy
4.
J Nat Prod ; 86(4): 751-758, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36812487

ABSTRACT

A chemical investigation of the endophytic Streptomyces sp. HBQ95, associated with the medicinal plant Cinnamomum cassia Presl, enabled the discovery of four new piperazic acid-bearing cyclodepsipeptides, lydiamycins E-H (1-4), and one known compound (lydiamycin A). Their chemical structures, including absolute configurations, were defined by a combination of spectroscopic analyses and multiple chemical manipulations. Lydiamycins F-H (2-4) and A (5) exhibited antimetastatic activity against PANC-1 human pancreatic cancer cells without significant cytotoxicity.


Subject(s)
Cinnamomum aromaticum , Plants, Medicinal , Pyridazines , Streptomyces , Humans , Cinnamomum aromaticum/chemistry , Streptomyces/chemistry , Pyridazines/chemistry
5.
Sci Rep ; 12(1): 13118, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35908082

ABSTRACT

The pandemic caused by severe acute respiratory Coronavirus-2 (SARS-CoV-2) has been ongoing for over two years, and treatment for COVID-19, other than monoclonal antibodies, is urgently required. Accordingly, we have investigated the inhibitors of SARS-CoV-2 protein targets by high-throughput virtual screening using a marine natural products database. Considering the calculated molecular properties and availability of the compounds, (+)-usnic acid was selected as a suitable hit. In the in vitro antiviral assay of (+)-usnic acid by the immunofluorescence method, IC50 was 7.99 µM, which is similar to that of remdesivir used as a positive control. The generalized Born and surface area continuum solvation (MM/GBSA) method was performed to find the potent target of (+)-usnic acid, and the Mpro protein showed the most prominent value, -52.05 kcal/mol, among other SARS-CoV-2 protein targets. Thereafter, RMSD and protein-ligand interactions were profiled using molecular dynamics (MD) simulations. Sodium usnate (NaU) improved in vitro assay results with an IC50 of 5.33 µM and a selectivity index (SI) of 9.38. Additionally, when (+)-usnic acid was assayed against SARS-CoV-2 variants, it showed enhanced efficacy toward beta variants with an IC50 of 2.92 µM and SI of 11.1. We report the in vitro anti-SARS-CoV-2 efficacy of (+)-usnic acid in this study and propose that it has the potential to be developed as a COVID-19 treatment if its in vivo efficacy has been confirmed.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Infections , Coronavirus , Benzofurans , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2 , Salts
6.
ACS Omega ; 7(6): 4840-4849, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35187304

ABSTRACT

The aim of this study was to isolate and identify chemical components with osteoclast differentiation inhibitory activity from Ulmus macrocarpa Hance bark. Spectroscopic analyses, including nuclear magnetic resonance (NMR) and electronic circular dichroism (ECD), resulted in the unequivocal elucidation of active compounds such as (2S)-naringenin-6-C-ß-d-glucopyranoside (1), (2R)-naringenin-6-C-ß-d-glucopyranoside (2), (2R,3S)-catechin-7-O-ß-d-xylopyranoside (3), (2R,3S)-catechin-7-O-ß-d-apiofuranoside (6), (2R,3R)-taxifolin-6-C-ß-d-glucopyranoside (7), and (2S,3S)-taxifolin-6-C-ß-d-glucopyranoside (8). Mechanistically, the compounds may exhibit osteoclast differentiation inhibitory activity via the downregulation of NFATc1, a master regulator involved in osteoclast formation. This is the first report of their inhibitory activities on the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation in murine bone marrow-derived macrophages. These findings provide further scientific evidence for the rational application of the genus Ulmus for the amelioration or treatment of osteopenic diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...