Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Mater Horiz ; 11(1): 251-261, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37929607

ABSTRACT

Solid electrolyte is a crucial component of all-solid-state batteries, with sulphide solid electrolytes such as lithium argyrodite being closest to commercialization due to their high ionic conductivity and formability. In this study, borohydride/halide dual-substituted argyrodite-type electrolytes, Li7-α-ßPS6-α-ß(BH4)αXß (X = Cl, Br, I; α + ß ≤ 1.8), have been synthesized using a two-step ball-milling method without post-annealing. Among the various compositions, Li5.35PS4.35(BH4)1.15Cl0.5 exhibits the highest ionic conductivity of 16.4 mS cm-1 at 25 °C when cold-pressed, which further improves to 26.1 mS cm-1 after low temperature sintering. The enhanced conductivity can be attributed to the increased number of Li vacancies resulting from increased BH4 and halide occupancy and site disorder. Li symmetric cells with Li5.35PS4.35(BH4)1.15Cl0.5 demonstrate stable Li plating and stripping cycling for over 2,000 hours at 1 mA cm-2, along with a high critical current density of 2.1 mA cm-2. An all-solid-state battery prepared using Li5.35PS4.35(BH4)1.15Cl0.5 as the electrolyte and pure Li as the anode exhibits an initial coulombic efficiency of 86.4%. Although these electrolytes have limited thermal stability, it shows a wide compositional range while maintaining high ionic conductivity.

2.
Adv Sci (Weinh) ; 10(5): e2204942, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36507619

ABSTRACT

Compared with conventional liquid electrolytes, solid electrolytes can better improve the safety properties and achieve high-energy-density Li-ion batteries. Sulfide-based solid electrolytes have attracted significant attention owing to their high ionic conductivities, which are comparable to those of their liquid counterparts. Among them, Li thiophosphates, including Li-argyrodites, are widely studied. In this study, Li thiophosphate solid electrolytes containing BH4 - anions are prepared via a simple and fast milling method even without heat treatment. The synthesized materials exhibit a high ionic conductivity of up to 11 mS cm-1 at 25 °C, which is much higher than reported values. To elucidate the mechanism behind, the thiophosphate local structure, whose effect on the ionic conductivity remains unclear to date, is investigated. Raman and solid-state NMR spectroscopies are performed to identify the thiophosphate local structure in the sulfide samples. Based on the analysis results, the ratios of the different thiophosphate units in the prepared electrolyte samples are determined. It is found that the thiophosphate local structure can be varied by changing the amount of LiBH4 and the milling conditions, which significantly impact the ionic conductivity. The all-solid-state cell with the prepared solid electrolyte exhibits superior cycle and rate performances.

3.
Materials (Basel) ; 14(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34500918

ABSTRACT

Titanium iron (TiFe) alloy is a room-temperature hydrogen-storage material, and it absorbs hydrogen via a two-step process to form TiFeH and then TiFeH2. The effect of V addition in TiFe alloy was recently elucidated. The V substitution for Ti sublattice lowers P2/P1 ratio, where P1 and P2 are the equilibrium plateau pressure for TiFe/TiFeH and TiFeH/TiFeH2, respectively, and thus restricts the two-step hydrogenation within a narrow pressure range. The focus of the present investigation was to optimize the V content such that maximum usable storage capacity can be achieved for the target pressure range: 1 MPa for absorption and 0.1 MPa for desorption. The effect of V substitution at selective Ti or Fe sublattices was closely analyzed, and the alloy composition Ti46Fe47.5V6.5 displayed the best performance with ca. 1.5 wt.% of usable capacity within the target pressure range. At the same time, another issue in TiFe-based alloys, which is a difficulty in activation at room temperature, was solved by Ce addition. It was shown that 3 wt.% Ce dispersion in TiFe alloy imparted to it easy room-temperature (RT) activation properties.

4.
Inorg Chem ; 59(17): 12733-12747, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32799455

ABSTRACT

Metal borohydrides are a fascinating and continuously expanding class of materials, showing promising applications within many different fields of research. This study presents 17 derivatives of the hydrogen-rich ammonium borohydride, NH4BH4, which all exhibit high gravimetric hydrogen densities (>9.2 wt % of H2). A detailed insight into the crystal structures combining X-ray diffraction and density functional theory calculations exposes an intriguing structural variety ranging from three-dimensional (3D) frameworks, 2D-layered, and 1D-chainlike structures to structures built from isolated complex anions, in all cases containing NH4+ countercations. Dihydrogen interactions between complex NH4+ and BH4- ions contribute to the structural diversity and flexibility, while inducing an inherent instability facilitating hydrogen release. The thermal stability of the ammonium metal borohydrides, as a function of a range of structural properties, is analyzed in detail. The Pauling electronegativity of the metal, the structural dimensionality, the dihydrogen bond length, the relative amount of NH4+ to BH4-, and the nearest coordination sphere of NH4+ are among the most important factors. Hydrogen release usually occurs in three steps, involving new intermediate compounds, observed as crystalline, polymeric, and amorphous materials. This research provides new opportunities for the design and tailoring of novel functional materials with interesting properties.

5.
Inorg Chem ; 59(16): 11449-11458, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32799501

ABSTRACT

Metal closo-borates have recently received significant attention due to their potential applications as solid-state ionic conductors. Here, the synthesis, crystal structures, and properties of (NH4)2B10H10·xNH3 (x = 1/2, 1 (α and ß)) and (NH4)2B12H12·xNH3 (x = 1 and 2) are reported. In situ synchrotron radiation powder X-ray diffraction allows for the investigation of structural changes as a function of temperature. The structures contain the complex cation N2H7+, which is rarely observed in solid materials, but can be important for proton conductivity. The structures are optimized by density functional theory (DFT) calculations to validate the structural models and provide detailed information about the hydrogen positions. Furthermore, the hydrogen dynamics of the complex cation N2H7+ are studied by molecular dynamics simulations, which reveals several events of a proton transfer within the N2H7+ units. The thermal properties are investigated by thermogravimetry and differential scanning calorimetry coupled with mass spectrometry, revealing that NH3 is released stepwise, which results in the formation of (NH4)2BnHn (n = 10 and 12) during heating. The proton conductivity of (NH4)2B12H12·xNH3 (x = 1 and 2) determined by electrochemical impedance spectroscopy is low but orders of magnitude higher than that of pristine (NH4)2B12H12. The thermal stability of the complex cation N2H7+ is high, up to 170 °C, which may provide new possible applications of these proton-rich materials.

6.
Inorg Chem ; 59(11): 7768-7778, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32395988

ABSTRACT

Ammine metal borohydrides show potential for solid-state hydrogen storage and can be tailored toward hydrogen release at low temperatures. Here, we report the synthesis and structural characterization of seven new ammine metal borohydrides, M(BH4)3·nNH3, M = La (n = 6, 4, or 3) or Ce (n = 6, 5, 4, or 3). The two compounds with n = 6 are isostructural and have new orthorhombic structure types (space group P21212) built from cationic complexes, [M(NH3)6(BH4)2]+, and are charge balanced by BH4-. The structure of Ce(BH4)3·5NH3 is orthorhombic (space group C2221) and is built from cationic complexes, [Ce(NH3)5(BH4)2]+, and charge balanced by BH4-. These are rare examples of borohydride complexes acting both as a ligand and as a counterion in the same compound. The structures of M(BH4)3·4NH3 are monoclinic (space group C2), built from neutral molecular complexes of [M(NH3)4(BH4)3]. The new compositions, M(BH4)3·3NH3 (M = La, Ce), among ammine metal borohydrides, are orthorhombic (space group Pna21), containing molecular complexes of [M(NH3)3(BH4)3]. A revised structural model for A(BH4)3·5NH3 (A = Y, Gd, Dy) is presented, and the previously reported composition A(BH4)3·4NH3 (A = Y, La, Gd, Dy) is proposed in fact to be M(BH4)3·3NH3 along with a new structural model. The temperature-dependent structural properties and decomposition are investigated by in situ synchrotron radiation powder X-ray diffraction in vacuum and argon atmosphere and by thermal analysis combined with mass spectrometry. The compounds with n = 6, 5, and 4 mainly release ammonia at low temperatures, while hydrogen evolution occurs for M(BH4)3·3NH3 (M = La, Ce). Gas-release temperatures and gas composition from these compounds depend on the physical conditions and on the relative stability of M(BH4)3·nNH3 and M(BH4)3.

7.
Phys Chem Chem Phys ; 22(17): 9204-9209, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32232248

ABSTRACT

Light weight and cheap electrolytes with fast multi-valent ion conductivity can pave the way for future high-energy density solid-state batteries, beyond the lithium-ion battery. Here we present the mechanism of Mg-ion conductivity of monoammine magnesium borohydride, Mg(BH4)2·NH3. Density functional theory calculations (DFT) reveal that the neutral molecule (NH3) in Mg(BH4)2·NH3 is exchanged between the lattice and interstitial Mg2+ facilitated by a highly flexible structure, mainly owing to a network of di-hydrogen bonds, N-Hδ+-δH-B and the versatile coordination of the BH4- ligand. DFT shows that di-hydrogen bonds in inorganic matter and hydrogen bonds in bio-materials have similar bond strengths and bond lengths. As a result of the high structural flexibiliy, the Mg-ion conductivity is dramatically improved at moderate temperature, e.g. σ(Mg2+) = 3.3 × 10-4 S cm-1 at T = 80 °C for Mg(BH4)2·NH3, which is approximately 8 orders of magnitude higher than that of Mg(BH4)2. Our results may inspire a new approach for the design and discovery of unprecedented multivalent ion conductors.

8.
Chem Commun (Camb) ; 56(28): 3971-3974, 2020 Apr 11.
Article in English | MEDLINE | ID: mdl-32152608

ABSTRACT

Hemiammine lithium borohydride, LiBH4·1/2NH3, is characterized and a new Li+ conductivity mechanism is identified. It exhibits a Li+ conductivity of 7 × 10-4 S cm-1 at 40 °C in the solid state and 3.0 × 10-2 S cm-1 at 55 °C after melting. The molten state of LiBH4·1/2NH3 has a high viscosity and can be mechanically stabilized in nano-composites with inert metal oxides and other hydrides making it a promising battery electrolyte.

9.
Dalton Trans ; 47(46): 16737-16746, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30426999

ABSTRACT

The new compound Sr(BH4)2(NH3BH3)2 has been synthesized and characterized with in situ powder X-ray diffraction and fast (28 or 60 kHz) magic angle spinning 1H, 11B and 15N NMR and structurally optimized with density functional theory calculations. This investigation reveals complex structural rearrangements for this compound as a function of temperature. A room temperature orthorhombic polymorph, α-Sr(BH4)2(NH3BH3)2, with the space group symmetry Pbca, has been determined with a layered structure of alternating ammonia borane and Sr(BH4)2, partially stabilized by dihydrogen bonding. Surprisingly the crystal symmetry is lowered upon heating, as evidenced both by in situ synchrotron powder X-ray diffraction and 11B MAS NMR data, resulting in an intermediate polymorph, ß'-Sr(BH4)2(NH3BH3)2, present from ∼65 to 115 °C. ß-Sr(BH4)2(NH3BH3)2, a sub structure of the ß'-polymorph showing higher symmetry with the space group symmetry Aba2, forms upon further heating. Ab initio molecular dynamics simulations show that the ammonia borane molecule can dynamically alternate between a bidentate and a tridentate coordination to Sr at finite temperature. The dynamic properties of the ammonia borane molecule in the solid state are suggested to cause the observed structural complexity. Based on simultaneous thermogravimetric analysis, differential scanning calorimetry and mass spectrometry, the decomposition of the compound was investigated showing a stabilization of ammonia borane in the structure relative to other metal borohydride ammonia boranes and neat ammonia borane.

10.
Phys Chem Chem Phys ; 18(32): 22540-7, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27468702

ABSTRACT

We have developed a fast solid state Li ion conductor composed of LiBH4 and SiO2 by means of interface engineering. A composite of LiBH4-SiO2 was simply synthesized by high energy ball-milling, and two types of SiO2 (MCM-41 and fumed silica) having different specific surface areas were used to evaluate the effect of the LiBH4/SiO2 interface on the ionic conductivity enhancement. The ionic conductivity of the ball-milled LiBH4-MCM-41 and LiBH4-fumed silica mixture is as high as 10(-5) S cm(-1) and 10(-4) S cm(-1) at room temperature, respectively. In particular, the conductivity of the latter is comparable to the LiBH4 melt-infiltrated into MCM-41. The conductivities of the LiBH4-fumed silica mixtures at different mixing ratios were analyzed employing a continuum percolation model, and the conductivity of the LiBH4/SiO2 interface layer is estimated to be 10(5) times higher than that of pure bulk LiBH4. The result highlights the importance of the interface and indicates that significant enhancement in ionic conductivity can be achieved via interface engineering.

11.
ChemSusChem ; 8(20): 3472-82, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26364708

ABSTRACT

A new series of solvent- and halide-free ammine strontium metal borohydrides Sr(NH3 )n (BH4 )2 (n=1, 2, and 4) and further investigations of Ca(NH3 )n (BH4 )2 (n=1, 2, 4, and 6) are presented. Crystal structures have been determined by powder XRD and optimized by DFT calculations to evaluate the strength of the dihydrogen bonds. Sr(NH3 )(BH4 )2 (Pbcn) and Sr(NH3 )2 (BH4 )2 (Pnc2) are layered structures, whereas M(NH3 )4 (BH4 )2 (M=Ca and Sr; P21 /c) are molecular structures connected by dihydrogen bonds. Both series of compounds release NH3 gas upon thermal treatment if the partial pressure of ammonia is low. Therefore, the strength of the dihydrogen bonds, the structure of the compounds, and the NH3 /BH4 (-) ratio for M(NH3 )n (BH4 )m have little influence on the composition of the released gasses. The composition of the released gas depends mainly on the thermal stability of the ammine metal borohydride and the corresponding metal borohydride.


Subject(s)
Ammonia/chemistry , Borohydrides/chemistry , Calcium/chemistry , Strontium/chemistry , Borohydrides/chemical synthesis , Molecular Structure , Powder Diffraction , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
12.
Clin Endosc ; 48(4): 322-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26240807

ABSTRACT

The coexistence of an epithelial lesion and a subepithelial lesion is uncommon. In almost all such cases, the coexistence of these lesions appears to be incidental. It is also extremely rare to encounter a neoplasm in the surface epithelium that overlies a benign mesenchymal tumor in the esophagus. Several cases of a coexisting esophageal neoplasm overlying a leiomyoma that is treated endoscopically or surgically have been reported previously. Here, three cases of a superficial esophageal neoplasm that developed over an esophageal leiomyoma and was then successfully removed by endoscopic submucosal dissection are described.

13.
Inorg Chem ; 54(15): 7402-14, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26196159

ABSTRACT

Fourteen solvent- and halide-free ammine rare-earth metal borohydrides M(BH4)3·nNH3, M = Y, Gd, Dy, n = 7, 6, 5, 4, 2, and 1, have been synthesized by a new approach, and their structures as well as chemical and physical properties are characterized. Extensive series of coordination complexes with systematic variation in the number of ligands are presented, as prepared by combined mechanochemistry, solvent-based methods, solid-gas reactions, and thermal treatment. This new synthesis approach may have a significant impact within inorganic coordination chemistry. Halide-free metal borohydrides have been synthesized by solvent-based metathesis reactions of LiBH4 and MCl3 (3:1), followed by reactions of M(BH4)3 with an excess of NH3 gas, yielding M(BH4)3·7NH3 (M = Y, Gd, and Dy). Crystal structure models for M(BH4)3·nNH3 are derived from a combination of powder X-ray diffraction (PXD), (11)B magic-angle spinning NMR, and density functional theory (DFT) calculations. The structures vary from two-dimensional layers (n = 1), one-dimensional chains (n = 2), molecular compounds (n = 4 and 5), to contain complex ions (n = 6 and 7). NH3 coordinates to the metal in all compounds, while BH4(-) has a flexible coordination, i.e., either as a terminal or bridging ligand or as a counterion. M(BH4)3·7NH3 releases ammonia stepwise by thermal treatment producing M(BH4)3·nNH3 (6, 5, and 4), whereas hydrogen is released for n ≤ 4. Detailed analysis of the dihydrogen bonds reveals new insight about the hydrogen elimination mechanism, which contradicts current hypotheses. Overall, the present work provides new general knowledge toward rational materials design and preparation along with limitations of PXD and DFT for analysis of structures with a significant degree of dynamics in the structures.

15.
Microsc Microanal ; 20(6): 1798-804, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25347999

ABSTRACT

The dehydrogenated microstructure of the lithium borohydride-yttrium hydride (LiBH4-YH3) composite obtained at 350°C under 0.3 MPa of hydrogen and static vacuum was investigated by transmission electron microscopy combined with a focused ion beam technique. The dehydrogenation reaction between LiBH4 and YH3 into LiH and YB4 takes place under 0.3 MPa of hydrogen, which produces YB4 nano-crystallites that are uniformly distributed in the LiH matrix. This microstructural feature seems to be beneficial for rehydrogenation of the dehydrogenation products. On the other hand, the dehydrogenation process is incomplete under static vacuum, leading to the unreacted microstructure, where YH3 and YH2 crystallites are embedded in LiBH4 matrix. High resolution imaging confirmed the presence of crystalline B resulting from the self-decomposition of LiBH4. However, Li2B12H12, which is assumed to be present in the LiBH4 matrix, was not clearly observed.

16.
Eur J Radiol ; 83(4): 639-45, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24507439

ABSTRACT

BACKGROUND AND AIM: This study was conducted to identify simple computerized tomography (CT) and clinical predictors of mortality in patients with pneumatosis intestinalis (PI). Thus, the clinical characteristics and outcomes of PI were assessed and the predictors of mortality were identified. METHODS: The medical records of 123 patients with PI were reviewed retrospectively. Multivariate logistic regression models were constructed to determine independent predictors of mortality. These data were used to develop a simple score that would predict mortality on the first and seventh day after diagnosis. RESULTS: The median age at diagnosis was 62 (range, 20-91) years. The most common cause of PI was mesenteric vascular ischemia (n=43, 35.0%). Twenty-nine (23.6%) disease-related deaths occurred during the index admission. Both signs of peritoneal irritation on physical examination and decreased or absent enhancement of the bowel wall were associated with increased mortality. If both factors were absent, the in-hospital mortalities on both the first and seventh days after the diagnosis of PI were less than 5%. However, if both factors were present, the in-hospital mortality was 57% on the first day and 59% on the seventh day. CONCLUSIONS: A simple and novel risk score that predicts mortality in patients with PI was proposed. Patients with both peritoneal irritation and decreased or absent enhancement of bowel wall on CT should be observed vigilantly and early intervention should be instituted.


Subject(s)
Pneumatosis Cystoides Intestinalis/diagnostic imaging , Pneumatosis Cystoides Intestinalis/diagnosis , Proportional Hazards Models , Radiographic Image Interpretation, Computer-Assisted/methods , Survival Analysis , Tomography, X-Ray Computed/statistics & numerical data , Adult , Aged , Aged, 80 and over , Female , Humans , Incidence , Male , Middle Aged , Reproducibility of Results , Republic of Korea/epidemiology , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Sensitivity and Specificity , Tomography, X-Ray Computed/methods , Young Adult
17.
Microsc Microanal ; 19 Suppl 5: 149-51, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23920195

ABSTRACT

The microstructural analysis of the dehydrogenation products of the Ca(BH4)2-MgH2 composite was performed using transmission electron microscopy. It was found that nanocrystalline CaB6 crystallites formed as a dehydrogenation product throughout the areas where the signals of Ca and Mg were simultaneously detected, in addition to relatively coarse Mg crystallites. The uniform distribution of the nanocrystalline CaB6 crystallites appears to play a key role in the rehydrogenation of the dehydrogenation products, which implies that microstructure is a crucial factor determining the reversibility of reactive hydride composites.

18.
Korean J Gastroenterol ; 60(6): 377-81, 2012 Dec.
Article in Korean | MEDLINE | ID: mdl-23242022

ABSTRACT

Perivascular epithelioid cell tumor (PEComa) is extremely rare, which originated from mesenchymal cells in the intestine, and composed of histologically and immunohistochemically distinctive perivascular epithelioid cells. We report here on a case of PEComa in the sigmoid colon. A 62-year-old woman presented with hematochzia 10 days ago. Her abdominal computed tomography scan showed a 5 cm sized intraluminal fungating heterogeneously enhanced, high density mass, which infiltrated pericolic tissue surrounding the sigmoid colon. Colonoscopy showed a purple colored polypoid mass with lobulating contour in the sigmoid colon. She underwent laparoscopic anterior resection. On the histologic examination, the tumor consisted of polygonal epithelioid cells with sheet-like growth of nests, which looked like alveolar tissues in lung. The tumor cells were strongly positive stained with human melanoma black-45 (HMB-45). Pathologic examination was compatible with PEComa. Sixteen months after surgery, she did well without tumor recurrence after surgery. We review the literatures concerning PEComa of the intestine focusing on endoscopic findings.


Subject(s)
Perivascular Epithelioid Cell Neoplasms/diagnosis , Colonic Neoplasms/diagnosis , Colonoscopy , Female , Gastrointestinal Hemorrhage , Humans , Melanoma-Specific Antigens/metabolism , Middle Aged , Perivascular Epithelioid Cell Neoplasms/pathology , Perivascular Epithelioid Cell Neoplasms/surgery , Tomography, X-Ray Computed , gp100 Melanoma Antigen
19.
J Phys Chem Lett ; 3(20): 2922-7, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-26292227

ABSTRACT

We discuss the use of nuclear magnetic resonance (NMR) spectroscopy to investigate the physical state of the eutectic composition of LiBH4-Ca(BH4)2 (LC) infiltrated into mesoporous scaffolds and the interface effect of various scaffolds. Eutectic melting and the melt infiltration of mixed borohydrides were observed through in situ NMR. In situ and ex situ NMR results for LC mixed with mesoporous scaffolds indicate that LiBH4 and Ca(BH4)2 exist as an amorphous mixture inside of the pores after infiltration. Surprisingly, the confinement of the eutectic LC mixture within the mesopores is initiated below the melting temperature, which indicates a certain interaction between the borohydrides and the mesoporous scaffolds. The confined borohydrides remain inside of the pores after cooling. These phenomena were not observed in microporous or nonporous materials, and this observation highlights the importance of the pore structure of the scaffolds. Such surface interactions may be associated with a faster dehydrogenation of the nanoconfined borohydrides.

20.
Chem Commun (Camb) ; 47(35): 9831-3, 2011 Sep 21.
Article in English | MEDLINE | ID: mdl-21811726

ABSTRACT

The increase in hydrogen back pressure unexpectedly enhances the overall dehydrogenation reaction rate of the 4LiBH(4) + YH(3) composite significantly. Also, argon back pressure has a similar influence on the composite. Gas back pressure seems to enhance the dehydrogenation reaction by kinetically suppressing the formation of the diborane by-product.

SELECTION OF CITATIONS
SEARCH DETAIL
...