Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biology (Basel) ; 13(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39056740

ABSTRACT

Anammox, a reaction in which microorganisms oxidize ammonia under anaerobic conditions, is used in the industry to remove ammonium from wastewater in an environmentally friendly manner. This process does not produce intermediate products such as nitrite or nitrate, which can act as secondary pollutants in soil and water environments. For industrial applications, anammox bacteria should be obtained from the environment and cultivated. Anammox bacteria generally exhibit a slow growth rate and may not produce a large number of cells due to their anaerobic metabolism. Additionally, their habitats appear to be limited to specific environments, such as oxidation-reduction transition zones. Consequently, most of the anammox bacteria that are used or studied originate from marine environments. In this study, anammox bacterial evidence was found in rice paddy soil and cultured under various conditions of aerobic, microaerobic, and anaerobic batch incubations to determine whether enrichment was possible. The anammox-specific gene (hzsA) and microbial community analyses were performed on the incubated soils. Although it was not easy to enrich anammox bacteria due to co-occurrence of denitrification and nitrification based on the chemistry data, potential existence of anammox bacteria was assumed in the terrestrial paddy soil environment. For potential industrial uses, anammox bacteria could be searched for in rice paddy soils by applying optimal enrichment conditions.

2.
ACS Sens ; 5(2): 395-403, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31913022

ABSTRACT

Real-time on-site monitoring of bioaerosols in an air environment is important for preventing various adverse health effects including respiratory diseases and allergies caused by bioaerosols. Here, we report the development of an on-site automated bioaerosol-monitoring system (ABMS) using integrated units including a wet-cyclone bioaerosol sampler, a thermal-lysis unit for extracting adenosine triphosphate (ATP), an ATP-detection unit based on the immobilization of luciferase/luciferin for bioluminescence reactions, and a photomultiplier tube-based detector. The performance of the bioaerosol detection system was verified using Escherichia coli (E. coli) as a model source. Each unit was optimized to process ∼9.6 × 105 times the concentrated ratio of collected bioaerosol samples, using a 3 min lysis time to extract ATP, and has a detection limit of ∼375 colony-forming units (CFUs)/mL with more than 30 days of stability for the immobilized-luciferase/luciferin detection unit supported by a glass-fiber conjugation pad. After the integration of all units, the ABMS achieved E. coli bioaerosol monitoring with continuous detection at 5 min intervals and a minimum detection limit of ∼130 CFU/mair3. Furthermore, the rapid responsivity and stable operation performance of the ABMS under test-bed conditions and during a field test demonstrated that the ABMS is capable of continuously monitoring bioaerosols in real-time with high sensitivity. The monitoring system developed here with immobilization strategies for bioluminescence reactions triggered by ATP extracted from collected bioaerosol samples using a simple heat-lysis method may help establish sustainable platforms to obtain stable signals for the real-time detection of bioaerosols on-site.


Subject(s)
Aerosols/chemistry , Environmental Monitoring/methods , Humans
3.
Sens Actuators B Chem ; 284: 525-533, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-32288254

ABSTRACT

We present a novel bioaerosol sampling system based on a wet-cyclone for real-time and continuous monitoring of airborne microorganisms. The Automated and Real-time Bioaerosol Sampler based on Wet-cyclone (ARBSW) continuously collects bioaerosols in a liquid medium and delivers the samples to a sensing device using a wireless remote control system. Based on a high air-to-liquid-flow-rate ratio (∼ 1.4 × 105) and a stable liquid thin film within a wet-cyclone, the system achieved excellent sampling performance as indicated by the high concentration and viability of bioaerosols (> 95% collection efficiency for > 0.5-µm-diameter particles, > 95% biological collection efficiency for Staphylococcus epidermidis and Micrococcus luteus). Furthermore, the continuous and real-time sampling performance of the ARBSW system under test-bed conditions and during a field test demonstrated that the ARBSW is capable of continuously monitoring bioaerosols in real time with high sensitivity. Therefore, the ARBSW shows promise for continuous real-time monitoring of bioaerosols and will facilitate the management of bioaerosol-related health and environmental issues.

SELECTION OF CITATIONS
SEARCH DETAIL