Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Endocrinol (Lausanne) ; 14: 1183278, 2023.
Article in English | MEDLINE | ID: mdl-37124730

ABSTRACT

From the time of its discovery and isolation in the mammalian hypothalamus, the decapeptide, gonadotropin-releasing hormone (GnRH), has also been found to be expressed in non-hypothalamic tissues and can elicit a diverse array of functions both in the brain and periphery. In cancer, past studies have targeted the gonadotropin-releasing hormone receptors (GnRHR) as a way to treat reproductive cancers due to its anti-tumorigenic effects. On the contrary, its metabolite, GnRH-(1-5), behaves divergently from its parental peptide through putative orphan G-protein coupled receptor (oGPCR), GPR101. In this review, we will focus on the potential roles of GnRH-(1-5) in the periphery with an emphasis on its effects on endometrial cancer progression.


Subject(s)
Endometrial Neoplasms , Gonadotropin-Releasing Hormone , Female , Humans , Gonadotropin-Releasing Hormone/metabolism , Peptide Fragments/metabolism , Receptors, LHRH/metabolism
2.
Oncotarget ; 12(26): 2500-2513, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34966482

ABSTRACT

The rising incidence and mortality of endometrial cancer (EC) in the United States calls for an improved understanding of the disease's progression. Current methodologies for diagnosis and treatment rely on the use of cell lines as models for tumor biology. However, due to inherent heterogeneity and differential growing environments between cell lines and tumors, these comparative studies have found little parallels in molecular signatures. As a consequence, the development and discovery of preclinical models and reliable drug targets are delayed. In this study, we established transcriptome parallels between cell lines and tumors from The Cancer Genome Atlas (TCGA) with the use of optimized normalization methods. We identified genes and signaling pathways associated with regulating the transformation and progression of EC. Specifically, the LXR/RXR activation, neuroprotective role for THOP1 in Alzheimer's disease, and glutamate receptor signaling pathways were observed to be mostly downregulated in advanced cancer stage. While some of these highlighted markers and signaling pathways are commonly found in the central nervous system (CNS), our results suggest a novel function of these genes in the periphery. Finally, our study underscores the value of implementing appropriate normalization methods in comparative studies to improve the identification of accurate and reliable markers.

3.
Endocrinol Diabetes Metab ; 4(1): e00190, 2021 01.
Article in English | MEDLINE | ID: mdl-33532621

ABSTRACT

Introduction: The interaction between isoflavones and the gut microbiota has been highlighted as a potential regulator of obesity and diabetes. In this study, we examined the interaction between isoflavones and a shortened activity photoperiod on the gut microbiome. Methods: Male mice were exposed to a diet containing no isoflavones (NIF) or a regular diet (RD) containing the usual isoflavones level found in a standard vivarium chow. These groups were further divided into regular (12L:12D) or short active (16L:8D) photoperiod, which mimics seasonal changes observed at high latitudes. White adipose tissue and genes involved in lipid metabolism and adipogenesis processes were analysed. Bacterial genomic DNA was isolated from fecal boli, and 16S ribosomal RNA sequencing was performed. Results: NIF diet increased body weight and adipocyte size when compared to mice on RD. The lack of isoflavones and photoperiod alteration also caused dysregulation of lipoprotein lipase (Lpl), glucose transporter type 4 (Glut-4) and peroxisome proliferator-activated receptor gamma (Pparg) genes. Using 16S ribosomal RNA sequencing, we found that mice fed the NIF diet had a greater proportion of Firmicutes than Bacteroidetes when compared to animals on the RD. These alterations were accompanied by changes in the endocrine profile, with lower thyroid-stimulating hormone levels in the NIF group compared to the RD. Interestingly, the NIF group displayed increased locomotion as compared to the RD group. Conclusion: Together, these data show an interaction between the gut bacterial communities, photoperiod length and isoflavone compounds, which may be essential for understanding and improving metabolic health.


Subject(s)
Adipogenesis/drug effects , Adipogenesis/physiology , Diet , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Isoflavones/administration & dosage , Isoflavones/pharmacology , Lipid Metabolism/drug effects , Lipid Metabolism/physiology , Photoperiod , Adipocytes/pathology , Administration, Oral , Animals , Body Weight , DNA, Bacterial/isolation & purification , Gastrointestinal Microbiome/genetics , Glucose Transporter Type 4/metabolism , Male , Mice, Inbred C57BL , Obesity/etiology
4.
Article in English | MEDLINE | ID: mdl-29515521

ABSTRACT

Gonadotropin-releasing hormone (GnRH) neurons originate outside the central nervous system (CNS) in the nasal placode where their migration to the basal forebrain is dependent on the integration of multiple signaling cues during development. The proper migration and establishment of the GnRH neuronal population within the CNS are critical for normal pubertal onset and reproductive function. The endopeptidase EP24.15 is expressed along the migratory path of GnRH neurons and cleaves the full-length GnRH to generate the metabolite GnRH-(1-5). Using the GN11 cell model, which is considered a pre-migratory GnRH neuronal cell line, we demonstrated that GnRH-(1-5) inhibits cellular migration in a wound closure assay by binding the orphan G protein-coupled receptor 173 (GPR173). In our current experiments, we sought to utilize an in vitro migration assay that better reflects the external environment that migrating GnRH neurons are exposed to during development. Therefore, we used a transwell assay where the inserts were coated with or without a matrigel, a gelatinous mixture containing extracellular matrix (ECM) proteins, to mimic the extracellular environment. Interestingly, GnRH-(1-5) inhibited the ability of GN11 cells to migrate only through ECM mimetic and was dependent on GPR173. Furthermore, we found that GN11 cells secrete TGF-ß1, 2, and 3 but only TGF-ß1 release and signaling were inhibited by GnRH-(1-5). To identify potential mechanisms involved in the proteolytic activation of TGF-ß, we measured a panel of genes implicated in ECM remodeling. We found that GnRH-(1-5) consistently increased tissue inhibitors of metalloproteinase 1 expression, which is an inhibitor of proteinase activity, leading to a decrease in bioactive TGF-ß and subsequent signaling. These results suggest that GnRH-(1-5) activating GPR173 may modulate the response of migrating GnRH neurons to external cues present in the ECM environment via an autocrine-dependent mechanism involving TGF-ß.

5.
Mol Cell Endocrinol ; 415: 114-25, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26277400

ABSTRACT

In the extracellular space, the gonadotropin-releasing hormone (GnRH) is metabolized by the zinc metalloendopeptidase EC3.4.24.15 (EP24.15) to form the pentapeptide, GnRH-(1-5). GnRH-(1-5) diverges in function and mechanism of action from GnRH in the brain and periphery. GnRH-(1-5) acts on the orphan G protein-coupled receptor 101 (GPR101) to sequentially stimulate epidermal growth factor (EGF) release, phosphorylate the EGF receptor (EGFR), and facilitate cellular migration. These GnRH-(1-5) actions are dependent on matrix metallopeptidase (MMP) activity. Here, we demonstrated that these GnRH-(1-5) effects are dependent on increased MMP-9 enzymatic activity in the Ishikawa and ECC-1 cell lines. Furthermore, the effects of GnRH-(1-5) mediated by GPR101 and the subsequent increase in MMP-9 enzymatic activity lead to an increase in cellular invasion. These results suggest that GnRH-(1-5) and GPR101 regulation of MMP-9 may have physiological relevance in the metastatic potential of endometrial cancer cells.


Subject(s)
Endometrial Neoplasms/metabolism , Epidermal Growth Factor/metabolism , Gonadotropin-Releasing Hormone/metabolism , Matrix Metalloproteinase 9/metabolism , Peptide Fragments/metabolism , Receptors, G-Protein-Coupled/metabolism , Cell Line, Tumor , Cell Movement , Female , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Metastasis , Phosphorylation , Receptors, G-Protein-Coupled/genetics , Signal Transduction
6.
Mol Endocrinol ; 28(1): 80-98, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24264576

ABSTRACT

The decapeptide GnRH is known for its central role in the regulation of the hypothalamo-pituitary-gonadal axis. In addition, it is also known to have local effects within peripheral tissues. The zinc metalloendopeptidase, EC 3.4.24.15 (EP24.15), can cleave GnRH at the Tyr(5)-Gly(6) bond to form the pentapeptide, GnRH-(1-5). The central and peripheral effect of GnRH-(1-5) is different from its parent peptide, GnRH. In the current study, we examined the effect of GnRH-(1-5) on epidermal growth factor receptor (EGFR) phosphorylation and cellular migration. Using the Ishikawa cell line as a model of endometrial cancer, we demonstrate that GnRH-(1-5) stimulates epidermal growth factor release, increases the phosphorylation of EGFR (P < .05) at three tyrosine sites (992, 1045, 1068), and promotes cellular migration. In addition, we also demonstrate that these actions of GnRH-(1-5) are mediated by the orphan G protein-coupled receptor 101 (GPR101). Down-regulation of GPR101 expression blocked the GnRH-(1-5)-mediated release of epidermal growth factor and the subsequent phosphorylation of EGFR and cellular migration. These results suggest that GPR101 is a critical requirement for GnRH-(1-5) transactivation of EGFR in Ishikawa cells.


Subject(s)
ErbB Receptors/genetics , Gonadotropin-Releasing Hormone/physiology , Oncogene Proteins/metabolism , Peptide Fragments/physiology , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/metabolism , Transcriptional Activation , Calcium Signaling , Cell Line, Tumor , Cell Movement , Endometrial Neoplasms , Epidermal Growth Factor/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Gene Expression , Humans , Matrix Metalloproteinase Inhibitors/pharmacology , Oligopeptides/physiology , Oncogene Proteins/genetics , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Phosphorylation , Protein Processing, Post-Translational , Pyrrolidonecarboxylic Acid/analogs & derivatives , Quinazolines/pharmacology , Receptors, Cell Surface/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, LHRH , Thiophenes/pharmacology , Tyrphostins/pharmacology
7.
Endocrinology ; 154(12): 4726-36, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24140715

ABSTRACT

We have previously demonstrated that the cleavage product of the full-length GnRH, GnRH-(1-5), is biologically active, binds G protein-coupled receptor 173 (GPR173), and inhibits the migration of cells in the immortalized GnRH-secreting GN11 cell. In this study, we attempted to characterize the GnRH-(1-5) intracellular signaling mechanism. To determine whether the signaling pathway mediating GnRH-(1-5) regulation of migration involves a G protein-dependent mechanism, cells were treated with a generic G protein antagonist in the presence and absence of GnRH-(1-5), and a wound-healing assay was conducted to measure migration. G Protein antagonist 2 treatment abolished the GnRH-(1-5) inhibition of migration, indicating that the mechanism of GnRH-(1-5) is G protein coupled. To identify the potential Gα-subunit recruited by GnRH-(1-5) binding GPR173, we measured the second messengers cAMP and inositol triphosphate levels. GnRH-(1-5) treatment did not alter cAMP levels relative to cells treated with vehicle or forskolin, suggesting that GnRH-(1-5) does not couple to the Gαs or Gαi subunits. Similarly, inositol triphosphate levels remained unchanged with GnRH-(1-5) treatment, indicating a mechanism not mediated by the Gαq/11 subunit. Therefore, we also examined whether GnRH-(1-5) activating GPR173 deviated from the canonical G protein-coupled receptor signaling pathway by coupling to ß-arrestin 1/2 to regulate migration. Our coimmunoprecipitation studies indicate that GnRH-(1-5) induces the rapid interaction between GPR173 and ß-arrestin 2 in GN11 cells. Furthermore, we demonstrate that this association recruits phosphatase and tensin homolog to mediate the downstream action of GnRH-(1-5). These findings suggest that the GnRH-(1-5) mechanism deviates from the canonical G protein-coupled receptor pathway to regulate cell migration in immortalized GnRH neurons.


Subject(s)
Arrestins/metabolism , Gonadotropin-Releasing Hormone/pharmacology , Neurons/drug effects , Animals , Arrestins/genetics , Cell Line , Cell Movement/drug effects , Cell Movement/physiology , Cyclic AMP , Gonadotropin-Releasing Hormone/chemistry , Gonadotropin-Releasing Hormone/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Mice , Neurons/cytology , Neurons/physiology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , beta-Arrestin 1 , beta-Arrestin 2 , beta-Arrestins
8.
Article in English | MEDLINE | ID: mdl-23847594

ABSTRACT

The gonadotropin-releasing hormone (GnRH) was originally isolated from the mammalian hypothalamus for its role as the primary regulator of reproductive function. Since its discovery, GnRH has also been shown to be located in non-hypothalamic tissues and is known to have diverse functions. Although the regulation of GnRH synthesis and release has been extensively studied, there is additional evidence to suggest that the processing of GnRH to the metabolite GnRH-(1-5) represents another layer of regulation. The focus of this review will be on the current evidence for the action of the pentapeptide metabolite GnRH-(1-5) in regulating cellular migration. We discuss the potential role of GnRH-(1-5) in regulating GnRH neuronal migration during development. Furthermore, we demonstrate these actions are mediated by the activation of a G protein-coupled receptor. Our findings suggest that GnRH-(1-5) may play a developmental function in addition to regulating developing cells.

9.
Endocrinology ; 154(2): 783-95, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23321696

ABSTRACT

The decapeptide GnRH is an important regulator of reproductive behavior and function. In the extracellular matrix, GnRH is metabolized by the endopeptidase EC3.4.24.15 (EP24.15) to generate the pentapeptide GnRH-(1-5). In addition to its expression in the adult hypothalamus, EP24.15 is expressed along the migratory path of GnRH-expressing neurons during development. Although we have previously demonstrated a role for EP24.15 in the generation of the biologically active pentapeptide GnRH-(1-5) in regulating GnRH expression and mediating sexual behavior during adulthood in rodents, the modulatory role of GnRH-(1-5) in the migration of GnRH neurons during development remains unknown. To address this information gap, we examined the effect of GnRH-(1-5) on the cellular migration of a premigratory GnRH-secreting neuronal cell line, the GN11 cell, using a wound-healing assay. Dose- and time-response studies demonstrated that GnRH-(1-5) significantly delayed wound closure. We then sought to identify the mechanism by which GnRH-(1-5) inhibits migration. Because the cognate GnRH receptor is a G protein-coupled receptor, we examined whether GnRH-(1-5) regulates migration by also activating a G protein-coupled receptor. Using a high-throughput ß-arrestin recruitment assay, we identified an orphan G protein-coupled receptor (GPR173) that was specifically activated by GnRH-(1-5). Interestingly, small interfering RNA to GPR173 reversed the GnRH-(1-5)-mediated inhibition on migration of GN11 neurons. Furthermore, we also demonstrate that the GnRH-(1-5)-activated GPR173-dependent signal transduction pathway involves the activation of the signal transducer and activator of transcription 3 in GnRH migration. These findings indicate a potential regulatory role for GnRH-(1-5) in GnRH neuronal migration during development.


Subject(s)
Gonadotropin-Releasing Hormone/metabolism , Peptide Fragments/pharmacology , Receptors, G-Protein-Coupled/physiology , Animals , Cell Line , Cell Movement/drug effects , Gonadotropin-Releasing Hormone/pharmacology , Male , Metalloendopeptidases/metabolism , Mice , Neurons/drug effects , Neurons/physiology , STAT3 Transcription Factor/metabolism , Signal Transduction/physiology , Wound Healing/drug effects
10.
Neurosci Lett ; 438(3): 356-61, 2008 Jun 27.
Article in English | MEDLINE | ID: mdl-18490108

ABSTRACT

Down syndrome (DS) is the leading non-heritable cause of mental retardation and is due to the effects of an extra chromosome 21. Mouse models of DS have been developed which parallel many of the cognitive and behavioral deficits of DS individuals. Of these, Ts65Dn mice show abnormal hippocampal properties including learning and memory deficits, altered synaptic plasticity and irregular dendritic spines. We assessed synaptic function of cultured postnatal Ts65Dn hippocampal neurons through examination of spontaneous miniature excitatory post-synaptic currents (mEPSCs) and compared them to those from diploid neurons. Averaged amplitudes and frequency of mEPSC events were similar to diploid suggesting presynaptic function is not overtly disrupted in Ts65Dn hippocampal neurons. However, both averaged decay and rise times (10-90% of peak) were significantly faster (approximately 20% for both rise and decay) in Ts65Dn neurons compared to diploid. The distribution of both decay and rise times, indicates global scaling of all percentile groups and is independent of amplitude suggesting normal electrotonic filtering in spite of abnormal expression of GIRK2 channel in Ts65Dn mouse. Western blot analysis suggests overexpression of GluR4 subunit of AMPA receptors which may contribute to faster mEPSC in Ts65Dn neurons. Intrinsic synaptic properties influenced by genetics or epigenetics factors in Ts65Dn postnatal cultured neurons are therefore disrupted and may contribute to the cognitive deficits associated with DS.


Subject(s)
Excitatory Postsynaptic Potentials/physiology , Hippocampus/cytology , Neurons/physiology , Animals , Animals, Newborn , Cells, Cultured , Disease Models, Animal , Down Syndrome/genetics , Down Syndrome/pathology , Excitatory Postsynaptic Potentials/genetics , Gene Expression Regulation/genetics , Humans , Mice , Mice, Transgenic , Patch-Clamp Techniques/methods , Reaction Time/physiology , Reaction Time/radiation effects , Receptors, AMPA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...