Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(7): 4888-4909, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36940470

ABSTRACT

Immune activating agents represent a valuable class of therapeutics for the treatment of cancer. An area of active research is expanding the types of these therapeutics that are available to patients via targeting new biological mechanisms. Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of immune signaling and a target of high interest for the treatment of cancer. Herein, we present the discovery and optimization of novel amino-6-aryl pyrrolopyrimidine inhibitors of HPK1 starting from hits identified via virtual screening. Key components of this discovery effort were structure-based drug design aided by analyses of normalized B-factors and optimization of lipophilic efficiency.


Subject(s)
Protein Serine-Threonine Kinases , Signal Transduction , Humans , Protein Serine-Threonine Kinases/metabolism , Pyrroles/pharmacology
2.
J Med Chem ; 60(7): 3002-3019, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28287730

ABSTRACT

Mutant epidermal growth factor receptor (EGFR) is a major driver of non-small-cell lung cancer (NSCLC). Marketed first generation inhibitors, such as erlotinib, effect a transient beneficial response in EGFR mutant NSCLC patients before resistance mechanisms render these inhibitors ineffective. Secondary oncogenic EGFR mutations account for approximately 50% of relapses, the most common being the gatekeeper T790M substitution that renders existing therapies ineffective. The discovery of PF-06459988 (1), an irreversible pyrrolopyrimidine inhibitor of EGFR T790M mutants, was recently disclosed.1 Herein, we describe our continued efforts to achieve potency across EGFR oncogenic mutations and improved kinome selectivity, resulting in the discovery of clinical candidate PF-06747775 (21), which provides potent EGFR activity against the four common mutants (exon 19 deletion (Del), L858R, and double mutants T790M/L858R and T790M/Del), selectivity over wild-type EGFR, and desirable ADME properties. Compound 21 is currently being evaluated in phase-I clinical trials of mutant EGFR driven NSCLC.


Subject(s)
Drug Design , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Acrylamides/chemistry , Acrylamides/pharmacokinetics , Acrylamides/pharmacology , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Dogs , Halogenation , Humans , Lung/drug effects , Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mice , Models, Molecular , Molecular Docking Simulation , Mutation , Protein Kinase Inhibitors/pharmacokinetics , Pyrrolidines/pharmacokinetics , Rats
3.
J Med Chem ; 59(5): 2005-24, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26756222

ABSTRACT

First generation EGFR TKIs (gefitinib, erlotinib) provide significant clinical benefit for NSCLC cancer patients with oncogenic EGFR mutations. Ultimately, these patients' disease progresses, often driven by a second-site mutation in the EGFR kinase domain (T790M). Another liability of the first generation drugs is severe adverse events driven by inhibition of WT EGFR. As such, our goal was to develop a highly potent irreversible inhibitor with the largest selectivity ratio between the drug-resistant double mutants (L858R/T790M, Del/T790M) and WT EGFR. A unique approach to develop covalent inhibitors, optimization of reversible binding affinity, served as a cornerstone of this effort. PF-06459988 was discovered as a novel, third generation irreversible inhibitor, which demonstrates (i) high potency and specificity to the T790M-containing double mutant EGFRs, (ii) minimal intrinsic chemical reactivity of the electrophilic warhead, (iii) greatly reduced proteome reactivity relative to earlier irreversible EGFR inhibitors, and (iv) minimal activity against WT EGFR.


Subject(s)
Drug Discovery , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Mutant Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Dose-Response Relationship, Drug , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Models, Molecular , Molecular Structure , Mutation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
4.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 3): o650, 2011 Feb 19.
Article in English | MEDLINE | ID: mdl-21522402

ABSTRACT

The title compound, C(14)H(13)BrN(2)O, was obtained by reaction of indan-1-yl methane-sulfonate with 2-amino-5-bromo-pyridin-3-ol in the presence of caesium carbonate. The indane ring system is approximately planar [all but one of the C atoms are coplanar within 0.03 Å, the latter atom being displaced by 0.206 (2) Šfrom the mean plane through the remaining atoms] and forms a dihedral angle of 58.41 (4)° with the pyridine ring. In the crystal, centrosymmetrically related mol-ecules are linked into dimers by N-H⋯N hydrogen bonds.

5.
J Comb Chem ; 11(5): 860-74, 2009.
Article in English | MEDLINE | ID: mdl-19583220

ABSTRACT

As part of an oncology chemistry program directed toward discovery of orally bioavailable inhibitors of the 90 kDa heat shock protein (Hsp90), several solution-phase libraries were designed and prepared. A 2 x 89 library of racemic resorcinol amides was prepared affording 131 purified compounds. After evaluation in a binding assay, followed by an AKT-Luminex cellular assay, three potent analogs had functional activity between 0.1 and 0.3 microM. Resolution by preparative chiral SFC chromatography led to (+)-15, (+)-16, and (+)-17 having functional IC(50) = 27, 43, and 190 nM, respectively. (+)-15 exhibited high clearance in human hepatocytes driven primarily by glucuronidation as confirmed by metabolite identification. A second 8 x 14 exploratory library was designed to investigate heterocyclic replacements of the resorcinol ring. The second library highlights the use of the (-)-sparteine-mediated enantioselective Pd-catalyzed alpha-arylation of N-Boc-pyrrolidine to prepare chiral 2-arylpyrrolidines in parallel.


Subject(s)
Chromatography, Gel/methods , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Glucuronides/metabolism , HSP90 Heat-Shock Proteins/chemistry , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Hydrogen Bonding , Pharmacokinetics , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...