Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(17): 11025-11041, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38626916

ABSTRACT

ALK-positive NSCLC patients demonstrate initial responses to ALK tyrosine kinase inhibitor (TKI) treatments, but eventually develop resistance, causing rapid tumor relapse and poor survival rates. Growing evidence suggests that the combination of drug and immune therapies greatly improves patient survival; however, due to the low immunogenicity of the tumors, ALK-positive patients do not respond to currently available immunotherapies. Tumor-associated macrophages (TAMs) play a crucial role in facilitating lung cancer growth by suppressing tumoricidal immune activation and absorbing chemotherapeutics. However, they can also be programmed toward a pro-inflammatory tumor suppressive phenotype, which represents a highly active area of therapy development. Iron loading of TAMs can achieve such reprogramming correlating with an improved prognosis in lung cancer patients. We previously showed that superparamagnetic iron oxide nanoparticles containing core-cross-linked polymer micelles (SPION-CCPMs) target macrophages and stimulate pro-inflammatory activation. Here, we show that SPION-CCPMs stimulate TAMs to secrete reactive nitrogen species and cytokines that exert tumoricidal activity. We further show that SPION-CCPMs reshape the immunosuppressive Eml4-Alk lung tumor microenvironment (TME) toward a cytotoxic profile hallmarked by the recruitment of CD8+ T cells, suggesting a multifactorial benefit of SPION-CCPM application. When intratracheally instilled into lung cancer-bearing mice, SPION-CCPMs delay tumor growth and, after first line therapy with a TKI, halt the regrowth of relapsing tumors. These findings identify SPIONs-CCPMs as an adjuvant therapy, which remodels the TME, resulting in a delay in the appearance of resistant tumors.


Subject(s)
Crizotinib , Lung Neoplasms , Magnetic Iron Oxide Nanoparticles , Tumor Microenvironment , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Tumor Microenvironment/drug effects , Animals , Magnetic Iron Oxide Nanoparticles/chemistry , Humans , Mice , Crizotinib/pharmacology , Crizotinib/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Cell Line, Tumor , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Cell Proliferation/drug effects , Female
2.
Drug Resist Updat ; 74: 101081, 2024 May.
Article in English | MEDLINE | ID: mdl-38521003

ABSTRACT

Precision oncology has revolutionized the treatment of ALK-positive lung cancer with targeted therapies. However, an unmet clinical need still to address is the treatment of refractory tumors that contain drug-induced resistant mutations in the driver oncogene or exhibit resistance through the activation of diverse mechanisms. In this study, we established mouse tumor-derived cell models representing the two most prevalent EML4-ALK variants in human lung adenocarcinomas and characterized their proteomic profiles to gain insights into the underlying resistance mechanisms. We showed that Eml4-Alk variant 3 confers a worse response to ALK inhibitors, suggesting its role in promoting resistance to targeted therapy. In addition, proteomic analysis of brigatinib-treated cells revealed the upregulation of SRC kinase, a protein frequently activated in cancer. Co-targeting of ALK and SRC showed remarkable inhibitory effects in both ALK-driven murine and ALK-patient-derived lung tumor cells. This combination induced cell death through a multifaceted mechanism characterized by profound perturbation of the (phospho)proteomic landscape and a synergistic suppressive effect on the mTOR pathway. Our study demonstrates that the simultaneous inhibition of ALK and SRC can potentially overcome resistance mechanisms and enhance clinical outcomes in ALK-positive lung cancer patients. ONE SENTENCE SUMMARY: Co-targeting ALK and SRC enhances ALK inhibitor response in lung cancer by affecting the proteomic profile, offering hope for overcoming resistance and improving clinical outcomes.


Subject(s)
Anaplastic Lymphoma Kinase , Drug Resistance, Neoplasm , Lung Neoplasms , Organophosphorus Compounds , Protein Kinase Inhibitors , Proteome , src-Family Kinases , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Humans , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/metabolism , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolism , Mice , Proteome/metabolism , Protein Kinase Inhibitors/pharmacology , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Pyrimidines/pharmacology , Proteomics/methods , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/antagonists & inhibitors , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Signal Transduction/drug effects
3.
Genome Biol ; 24(1): 267, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001542

ABSTRACT

BACKGROUND: RNA editing has been described as promoting genetic heterogeneity, leading to the development of multiple disorders, including cancer. The cytosine deaminase APOBEC3B is implicated in tumor evolution through DNA mutation, but whether it also functions as an RNA editing enzyme has not been studied. RESULTS: Here, we engineer a novel doxycycline-inducible mouse model of human APOBEC3B-overexpression to understand the impact of this enzyme in tissue homeostasis and address a potential role in C-to-U RNA editing. Elevated and sustained levels of APOBEC3B lead to rapid alteration of cellular fitness, major organ dysfunction, and ultimately lethality in mice. Importantly, RNA-sequencing of mouse tissues expressing high levels of APOBEC3B identifies frequent UCC-to-UUC RNA editing events that are not evident in the corresponding genomic DNA. CONCLUSIONS: This work identifies, for the first time, a new deaminase-dependent function for APOBEC3B in RNA editing and presents a preclinical tool to help understand the emerging role of APOBEC3B as a driver of carcinogenesis.


Subject(s)
Neoplasms , RNA Editing , Humans , Animals , Mice , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Mutation , Neoplasms/pathology , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , DNA/metabolism
4.
Cell Rep ; 42(12): 113266, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37979172

ABSTRACT

Chromosome instability (CIN) contributes to resistance to therapies and tumor evolution. Although natural killer (NK) cells can eliminate cells with complex karyotypes, high-CIN human tumors have an immunosuppressive phenotype. To understand which CIN-associated molecular features alter immune recognition during tumor evolution, we overexpress Polo-like kinase 1 (Plk1) in a Her2+ breast cancer model. These high-CIN tumors activate a senescence-associated secretory phenotype (SASP), upregulate PD-L1 and CD206, and induce non-cell-autonomous nuclear factor κB (NF-κß) signaling, facilitating immune evasion. Single-cell RNA sequencing from pre-neoplastic mammary glands unveiled the presence of Arg1+ macrophages, NK cells with reduced effector functions, and increased resting regulatory T cell infiltration. We further show that high PLK1-expressing human breast tumors display gene expression patterns associated with SASP, NF-κß signaling, and immune suppression. These findings underscore the need to understand the immune landscape in CIN tumors to identify more effective therapies, potentially combining immune checkpoint or NF-κß inhibitors with current treatments.


Subject(s)
Breast Neoplasms , Chromosomal Instability , Immune Tolerance , Polo-Like Kinase 1 , Tumor Escape , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Humans , Animals , Mice , Polo-Like Kinase 1/genetics , Polo-Like Kinase 1/metabolism , Cell Line, Tumor , Receptor, ErbB-2/genetics , NF-kappa B/metabolism , B7-H1 Antigen/metabolism , Mannose Receptor/metabolism , Killer Cells, Natural/immunology , Heterografts , MCF-7 Cells , Female
5.
Cell Death Dis ; 14(7): 430, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452072

ABSTRACT

Tumor progression and evolution are frequently associated with chromosomal instability (CIN). Tumor cells often express high levels of the mitotic checkpoint protein MAD2, leading to mitotic arrest and cell death. However, some tumor cells are capable of exiting mitosis and consequently increasing CIN. How cells escape the mitotic arrest induced by MAD2 and proliferate with CIN is not well understood. Here, we explored loss-of-function screens and drug sensitivity tests associated with MAD2 levels in aneuploid cells and identified that aneuploid cells with high MAD2 levels are more sensitive to FOXM1 depletion. Inhibition of FOXM1 promotes MAD2-mediated mitotic arrest and exacerbates CIN. Conversely, elevating FOXM1 expression in MAD2-overexpressing human cell lines reverts prolonged mitosis and rescues mitotic errors, cell death and proliferative disadvantages. Mechanistically, we found that FOXM1 facilitates mitotic exit by inhibiting the spindle assembly checkpoint (SAC) and the expression of Cyclin B. Notably, we observed that FOXM1 is upregulated upon aneuploid induction in cells with dysfunctional SAC and error-prone mitosis, and these cells are sensitive to FOXM1 knockdown, indicating a novel vulnerability of aneuploid cells.


Subject(s)
Cell Cycle Proteins , Mitosis , Humans , Cell Cycle Proteins/metabolism , Mad2 Proteins/genetics , Mad2 Proteins/metabolism , Mitosis/genetics , Cell Line, Tumor , Spindle Apparatus/metabolism , Aneuploidy , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism
6.
Nat Commun ; 13(1): 4557, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35931677

ABSTRACT

The high plasticity of lung epithelial cells, has for many years, confounded the correct identification of the cell-of-origin of lung adenocarcinoma (LUAD), one of the deadliest malignancies worldwide. Here, we employ lineage-tracing mouse models to investigate the cell of origin of Eml4-Alk LUAD, and show that Club and Alveolar type 2 (AT2) cells give rise to tumours. We focus on Club cell originated tumours and find that Club cells experience an epigenetic switch by which they lose their lineage fidelity and gain an AT2-like phenotype after oncogenic transformation. Single-cell transcriptomic analyses identified two trajectories of Club cell evolution which are similar to the ones used during lung regeneration, suggesting that lung epithelial cells leverage on their plasticity and intrinsic regeneration mechanisms to give rise to a tumour. Together, this study highlights the role of Club cells in LUAD initiation, identifies the mechanism of Club cell lineage infidelity, confirms the presence of these features in human tumours, and unveils key mechanisms conferring LUAD heterogeneity.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Animals , Cell Differentiation/genetics , Cell Transformation, Neoplastic/pathology , Epithelial Cells/pathology , Humans , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice
7.
Adv Healthc Mater ; 10(19): e2100385, 2021 10.
Article in English | MEDLINE | ID: mdl-34137217

ABSTRACT

Iron is an essential co-factor for cellular processes. In the immune system, it can activate macrophages and represents a potential therapeutic for various diseases. To specifically deliver iron to macrophages, iron oxide nanoparticles are embedded in polymeric micelles of reactive polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine). Upon surface functionalization via dihydrolipoic acid, iron oxide cores act as crosslinker themselves and undergo chemoselective disulfide bond formation with the surrounding poly(S-ethylsulfonyl-l-cysteine) block, yielding glutathione-responsive core cross-linked polymeric micelles (CCPMs). When applied to primary murine and human macrophages, these nanoparticles display preferential uptake, sustained intracellular iron release, and induce a strong inflammatory response. This response is also demonstrated in vivo when nanoparticles are intratracheally administered to wild-type C57Bl/6N mice. Most importantly, the controlled release concept to deliver iron oxide in redox-responsive CCPMs induces significantly stronger macrophage activation than any other iron source at identical iron levels (e.g., Feraheme), directing to a new class of immune therapeutics.


Subject(s)
Iron , Micelles , Animals , Inflammation/drug therapy , Macrophages , Mice , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...