Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(8): 2963-2974, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38404378

ABSTRACT

Liquid-liquid phase separation (LLPS) is a thermodynamically driven process that occurs in mixtures of low miscibility material. LLPS is an important process in chemical, biological, and environmental systems. In atmospheric chemistry, LLPS in aerosol containing internally-mixed organic and inorganic particles has been an area of significant interest, with particles separating to form organic-rich and aqueous phases on dehydration. This alters the optical properties of the particles, has been connected to changes in the cloud nucleation ability of the aerosol, and potentially changes the reactivity of particles towards gas-phase oxidants. Although the chemical systems that undergo LLPS have become quite well-characterized, the properties and processes of LLPS particles are quite poorly understood. In this work, we characterize LLPS in aerosol particles containing ammonium sulfate and triethylene glycol (3EG), a semi-volatile organic molecule. We explore the relative humidity (RH) conditions under which LLPS occurs and characterize the rate of evaporation of 3EG from well-mixed and LLPS particles as a function of RH. We show that the evaporation rates vary with RH due to changes in chemical activity, however no clear change in the dynamics following LLPS are observed. We interpret our observations using a thermodynamic model (AIOMFAC) coupled with an evaporation model and show that a significant increase in the activity coefficient of 3EG as the RH decreases, required for LLPS to occur, obscures a clear step-change in the evaporation rates following LLPS. By characterizing the evaporation rates, we estimate the composition of the organic-rich phase and compare our results to thermodynamic predictions. This study is the first to explore the connection between LLPS and the chemical evolution of aerosol particles via the evaporation of semi-volatile organic material. Ultimately, we reveal that the thermodynamics of non-ideal mixing are primarily responsible for the controlling both the rate of evaporation and the onset of LLPS, with LLPS itself having limited impact on the rate of evaporation in a fluid system. These results have significant implications for understanding and predicting the lifetime of aerosol particles, their effect on cloud formation, and the chemical evolution of multiphase systems by particle-gas partitioning and heterogeneous reactions.

2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35064080

ABSTRACT

The phase state of respiratory aerosols and droplets has been linked to the humidity-dependent survival of pathogens such as SARS-CoV-2. To inform strategies to mitigate the spread of infectious disease, it is thus necessary to understand the humidity-dependent phase changes associated with the particles in which pathogens are suspended. Here, we study phase changes of levitated aerosols and droplets composed of model respiratory compounds (salt and protein) and growth media (organic-inorganic mixtures commonly used in studies of pathogen survival) with decreasing relative humidity (RH). Efflorescence was suppressed in many particle compositions and thus unlikely to fully account for the humidity-dependent survival of viruses. Rather, we identify organic-based, semisolid phase states that form under equilibrium conditions at intermediate RH (45 to 80%). A higher-protein content causes particles to exist in a semisolid state under a wider range of RH conditions. Diffusion and, thus, disinfection kinetics are expected to be inhibited in these semisolid states. These observations suggest that organic-based, semisolid states are an important consideration to account for the recovery of virus viability at low RH observed in previous studies. We propose a mechanism in which the semisolid phase shields pathogens from inactivation by hindering the diffusion of solutes. This suggests that the exogenous lifetime of pathogens will depend, in part, on the organic composition of the carrier respiratory particle and thus its origin in the respiratory tract. Furthermore, this work highlights the importance of accounting for spatial heterogeneities and time-dependent changes in the properties of aerosols and droplets undergoing evaporation in studies of pathogen viability.


Subject(s)
Calcium Chloride/chemistry , Models, Chemical , Respiratory Aerosols and Droplets/chemistry , SARS-CoV-2/chemistry , Serum Albumin/chemistry , Sodium Chloride/chemistry , COVID-19/virology , Diffusion , Disinfection/methods , Humans , Humidity , Kinetics , Microbial Viability , Phase Transition , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...