Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 132024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857064

ABSTRACT

Enterococcus faecium is a microbiota species in humans that can modulate host immunity (Griffin and Hang, 2022), but has also acquired antibiotic resistance and is a major cause of hospital-associated infections (Van Tyne and Gilmore, 2014). Notably, diverse strains of E. faecium produce SagA, a highly conserved peptidoglycan hydrolase that is sufficient to promote intestinal immunity (Rangan et al., 2016; Pedicord et al., 2016; Kim et al., 2019) and immune checkpoint inhibitor antitumor activity (Griffin et al., 2021). However, the functions of SagA in E. faecium were unknown. Here, we report that deletion of sagA impaired E. faecium growth and resulted in bulged and clustered enterococci due to defective peptidoglycan cleavage and cell separation. Moreover, ΔsagA showed increased antibiotic sensitivity, yielded lower levels of active muropeptides, displayed reduced activation of the peptidoglycan pattern-recognition receptor NOD2, and failed to promote cancer immunotherapy. Importantly, the plasmid-based expression of SagA, but not its catalytically inactive mutant, restored ΔsagA growth, production of active muropeptides, and NOD2 activation. SagA is, therefore, essential for E. faecium growth, stress resistance, and activation of host immunity.


Subject(s)
Enterococcus faecium , Immune Checkpoint Inhibitors , N-Acetylmuramoyl-L-alanine Amidase , Enterococcus faecium/genetics , N-Acetylmuramoyl-L-alanine Amidase/metabolism , N-Acetylmuramoyl-L-alanine Amidase/genetics , Immune Checkpoint Inhibitors/pharmacology , Humans , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Peptidoglycan/metabolism , Mice
2.
bioRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38014356

ABSTRACT

Enterococcus faecium is a microbiota species in humans that can modulate host immunity, but has also acquired antibiotic resistance and is a major cause of hospital-associated infections. Notably, diverse strains of E. faecium produce SagA, a highly conserved peptidoglycan hydrolase that is sufficient to promote intestinal immunity and immune checkpoint inhibitor antitumor activity. However, the functions of SagA in E. faecium were unknown. Here we report that deletion of sagA impaired E. faecium growth and resulted in bulged and clustered enterococci due to defective peptidoglycan cleavage and cell separation. Moreover, Δ sagA showed increased antibiotic sensitivity, yielded lower levels of active muropeptides, displayed reduced activation of the peptidoglycan pattern-recognition receptor NOD2, and failed to promote cancer immunotherapy. Importantly, plasmid-based expression of SagA, but not its catalytically-inactive mutant, restored Δ sagA growth, production of active muropeptides and NOD2 activation. SagA is therefore essential for E. faecium growth, stress resistance and activation of host immunity.

3.
Front Microbiol ; 13: 913949, 2022.
Article in English | MEDLINE | ID: mdl-35774457

ABSTRACT

Bacterial cell wall contains peptidoglycan (PG) to protect the cells from turgor and environmental stress. PG consists of polymeric glycans cross-linked with each other by short peptide chains and forms an elastic mesh-like sacculus around the cytoplasmic membrane. Bacteria encode a plethora of PG hydrolytic enzymes of diverse specificity playing crucial roles in growth, division, or turnover of PG. In Escherichia coli, the cross-link-specific endopeptidases, MepS, -M, and -H, facilitate the enlargement of PG sacculus during cell elongation, whereas LytM-domain factors, EnvC and NlpD activate the division-specific amidases, AmiA, -B, and -C to facilitate the cell separation. In a screen to isolate additional factors involved in PG enlargement, we identified actS (encoding a LytM paralog, formerly ygeR) as its overexpression compensated the loss of elongation-specific endopeptidase, MepS. The overexpression of ActS resulted in the generation of partly denuded glycan strands in PG sacculi, indicating that ActS is either an amidase or an activator of amidase(s). The detailed genetic and biochemical analyses established that ActS is not a PG hydrolase, but an activator of the division-specific amidase, AmiC. However, interestingly, the suppression of the mepS growth defects by actS is not mediated through AmiC. The domain-deletion experiments confirmed the requirement of the N-terminal LysM domain of ActS for the activation of AmiC, but not for the alleviation of growth defects in mepS mutants, indicating that ActS performs two distinctive PG metabolic functions. Altogether our results suggest that in addition to activating the division-specific amidase, AmiC, ActS modulates yet another pathway that remains to be identified.

4.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33941679

ABSTRACT

The gram-negative bacterial cell envelope is made up of an outer membrane (OM), an inner membrane (IM) that surrounds the cytoplasm, and a periplasmic space between the two membranes containing peptidoglycan (PG or murein). PG is an elastic polymer that forms a mesh-like sacculus around the IM, protecting cells from turgor and environmental stress conditions. In several bacteria, including Escherichia coli, the OM is tethered to PG by an abundant OM lipoprotein, Lpp (or Braun's lipoprotein), that functions to maintain the structural and functional integrity of the cell envelope. Since its discovery, Lpp has been studied extensively, and although l,d-transpeptidases, the enzymes that catalyze the formation of PG-Lpp linkages, have been earlier identified, it is not known how these linkages are modulated. Here, using genetic and biochemical approaches, we show that LdtF (formerly yafK), a newly identified paralog of l,d-transpeptidases in E. coli, is a murein hydrolytic enzyme that catalyzes cleavage of Lpp from the PG sacculus. LdtF also exhibits glycine-specific carboxypeptidase activity on muropeptides containing a terminal glycine residue. LdtF was earlier presumed to be an l,d-transpeptidase; however, our results show that it is indeed an l,d-endopeptidase that hydrolyzes the products generated by the l,d-transpeptidases. To summarize, this study describes the discovery of a murein endopeptidase with a hitherto unknown catalytic specificity that removes the PG-Lpp cross-links, suggesting a role for LdtF in the regulation of PG-OM linkages to maintain the structural integrity of the bacterial cell envelope.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Lipoproteins/metabolism , Peptidoglycan/metabolism , Peptidyl Transferases/metabolism , Bacterial Outer Membrane Proteins/genetics , Carboxypeptidases/genetics , Carboxypeptidases/metabolism , Chromatography, High Pressure Liquid/methods , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Glycine/metabolism , Lipoproteins/genetics , Mass Spectrometry/methods , Mutation , Peptidyl Transferases/genetics
5.
EcoSal Plus ; 9(2)2021 01.
Article in English | MEDLINE | ID: mdl-33470191

ABSTRACT

Peptidoglycan is a defining feature of the bacterial cell wall. Initially identified as a target of the revolutionary beta-lactam antibiotics, peptidoglycan has become a subject of much interest for its biology, its potential for the discovery of novel antibiotic targets, and its role in infection. Peptidoglycan is a large polymer that forms a mesh-like scaffold around the bacterial cytoplasmic membrane. Peptidoglycan synthesis is vital at several stages of the bacterial cell cycle: for expansion of the scaffold during cell elongation and for formation of a septum during cell division. It is a complex multifactorial process that includes formation of monomeric precursors in the cytoplasm, their transport to the periplasm, and polymerization to form a functional peptidoglycan sacculus. These processes require spatio-temporal regulation for successful assembly of a robust sacculus to protect the cell from turgor and determine cell shape. A century of research has uncovered the fundamentals of peptidoglycan biology, and recent studies employing advanced technologies have shed new light on the molecular interactions that govern peptidoglycan synthesis. Here, we describe the peptidoglycan structure, synthesis, and regulation in rod-shaped bacteria, particularly Escherichia coli, with a few examples from Salmonella and other diverse organisms. We focus on the pathway of peptidoglycan sacculus elongation, with special emphasis on discoveries of the past decade that have shaped our understanding of peptidoglycan biology.


Subject(s)
Cell Wall , Peptidoglycan , Cell Division , Cell Membrane , Escherichia coli
6.
Proc Natl Acad Sci U S A ; 116(16): 7825-7830, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30940749

ABSTRACT

Bacteria are surrounded by a protective exoskeleton, peptidoglycan (PG), a cross-linked mesh-like macromolecule consisting of glycan strands interlinked by short peptides. Because PG completely encases the cytoplasmic membrane, cleavage of peptide cross-links is a prerequisite to make space for incorporation of nascent glycan strands for its successful expansion during cell growth. In most bacteria, the peptides consist of l-alanine, d-glutamate, meso-diaminopimelic acid (mDAP) and d-alanine (d-Ala) with cross-links occurring either between d-Ala and mDAP or two mDAP residues. In Escherichia coli, the d-Ala-mDAP cross-links whose cleavage by specialized endopeptidases is crucial for expansion of PG predominate. However, a small proportion of mDAP-mDAP cross-links also exist, yet their role in the context of PG expansion or the hydrolase(s) capable of catalyzing their cleavage is not known. Here, we identified an ORF of unknown function, YcbK (renamed MepK), as an mDAP-mDAP cross-link cleaving endopeptidase working in conjunction with other elongation-specific endopeptidases to make space for efficient incorporation of nascent PG strands into the sacculus. E. coli mutants lacking mepK and another d-Ala-mDAP-specific endopeptidase (mepS) were synthetic sick, and the defects were abrogated by lack of l,d-transpeptidases, enzymes catalyzing the formation of mDAP cross-links. Purified MepK was able to cleave the mDAP cross-links of soluble muropeptides and of intact PG sacculi. Overall, this study describes a PG hydrolytic enzyme with a hitherto unknown substrate specificity that contributes to expansion of the PG sacculus, emphasizing the fundamental importance of cross-link cleavage in bacterial peptidoglycan synthesis.


Subject(s)
Bacteria/enzymology , Bacteria/metabolism , Bacterial Proteins , Cell Wall , N-Acetylmuramoyl-L-alanine Amidase , Amino Acids/chemistry , Amino Acids/metabolism , Bacteria/chemistry , Bacteria/cytology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , N-Acetylmuramoyl-L-alanine Amidase/chemistry , N-Acetylmuramoyl-L-alanine Amidase/genetics , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...