Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 229
Filter
1.
Sci Rep ; 14(1): 11439, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769416

ABSTRACT

Although mice are social, multiple animals' neural activities are rarely explored. To characterise the neural activities during multi-brain interaction, we simultaneously recorded local field potentials (LFP) in the prefrontal cortex of four mice. The social context and locomotive states predominately modulated the entire LFP structure. The power of lower frequency bands-delta to alpha-were correlated with each other and anti-correlated with gamma power. The high-to-low-power ratio (HLR) provided a useful measure to understand LFP changes along the change of behavioural and locomotive states. The HLR during huddled conditions was lower than that during non-huddled conditions, dividing the social context into two. Multi-brain analyses of HLR indicated that the mice in the group displayed high cross-correlation. The mice in the group often showed unilateral precedence of HLR by Granger causality analysis, possibly comprising a hierarchical social structure. Overall, this study shows the importance of the social environment in brain dynamics and emphasises the simultaneous multi-brain recordings in social neuroscience.


Subject(s)
Social Behavior , Animals , Mice , Male , Prefrontal Cortex/physiology , Brain/physiology , Behavior, Animal/physiology , Mice, Inbred C57BL
2.
Biotechnol J ; 19(5): e2300581, 2024 May.
Article in English | MEDLINE | ID: mdl-38719587

ABSTRACT

Human interleukin-3 (IL3) is a multifunctional cytokine essential for both clinical and biomedical research endeavors. However, its production in Escherichia coli has historically been challenging due to its aggregation into inclusion bodies, requiring intricate solubilization and refolding procedures. This study introduces an innovative approach employing two chaperone proteins, maltose binding protein (MBP) and protein disulfide isomerase b'a' domain (PDIb'a'), as N-terminal fusion tags. Histidine tag (H) was added at the beginning of each chaperone protein gene for easy purification. This fusion of chaperone proteins significantly improved IL3 solubility across various E. coli strains and temperature conditions, eliminating the need for laborious refolding procedures. Following expression optimization, H-PDIb'a'-IL3 was purified using two chromatographic methods, and the subsequent removal of the H-PDIb'a' tag yielded high-purity IL3. The identity of the purified protein was confirmed through liquid chromatography coupled with tandem mass spectrometry analysis. Biological activity assays using human erythroleukemia TF-1 cells revealed a unique two-step stimulation pattern for both purified IL3 and the H-PDIb'a'-IL3 fusion protein, underscoring the protein's functional integrity and revealing novel insights into its cellular interactions. This study advances the understanding of IL3 expression and activity while introducing novel considerations for protein fusion strategies.


Subject(s)
Escherichia coli , Interleukin-3 , Protein Disulfide-Isomerases , Recombinant Fusion Proteins , Humans , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Interleukin-3/metabolism , Interleukin-3/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Cell Line, Tumor , Solubility
3.
J Biotechnol ; 386: 42-51, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38552676

ABSTRACT

Keratinocyte growth factor (KGF), also known as fibroblast growth factor 7 (FGF7), plays a critical role in embryonic development, cell proliferation, and differentiation. However, efficient production of recombinant KGF remains a challenge due to its low expression levels and high tendency for aggregation in Escherichia coli. This study aimed to enhance the expression and solubility of KGF by employing different protein tags-PDIb'a', MBP, and His-fused to the N-terminus of KGF. Among these, H-PDIb'a'-KGF demonstrated superior stability and was selected for large-scale production and purification. The purified KGF was confirmed through liquid chromatography with tandem mass spectrometry analysis, which showed an 81% fragment mass identification coverage. Biological activity assessments using human breast cancer MCF-7 cells indicated that purified KGF significantly increased cell proliferation, with an EC50 of 6.4 ± 0.5 pM. Interestingly, PDIb'a' alone also exhibited a stimulatory effect on MCF-7 cells. Furthermore, the purified KGF enhanced the wound healing of HaCaT keratinocytes in a dose-dependent manner. These findings provide valuable insights into the efficient production and functional characterization of recombinant KGF for potential applications in therapeutic interventions.


Subject(s)
Fibroblast Growth Factor 7 , Humans , Cell Differentiation , Cell Proliferation , Fibroblast Growth Factor 7/genetics , Fibroblast Growth Factor 7/pharmacology , Fibroblast Growth Factor 7/metabolism , Fibroblast Growth Factors/metabolism , Keratinocytes/metabolism , MCF-7 Cells , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology
4.
Nat Commun ; 15(1): 635, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245509

ABSTRACT

Recording neuronal activity using multiple electrodes has been widely used to understand the functional mechanisms of the brain. Increasing the number of electrodes allows us to decode more variety of functionalities. However, handling massive amounts of multichannel electrophysiological data is still challenging due to the limited hardware resources and unavoidable thermal tissue damage. Here, we present machine learning (ML)-based reconstruction of high-frequency neuronal spikes from subsampled low-frequency band signals. Inspired by the equivalence between high-frequency restoration and super-resolution in image processing, we applied a transformer ML model to neuronal data recorded from both in vitro cultures and in vivo male mouse brains. Even with the x8 downsampled datasets, our trained model reasonably estimated high-frequency information of spiking activity, including spike timing, waveform, and network connectivity. With our ML-based data reduction applicable to existing multichannel recording hardware while achieving neuronal signals of broad bandwidths, we expect to enable more comprehensive analysis and control of brain functions.


Subject(s)
Brain , Neurons , Mice , Animals , Male , Action Potentials/physiology , Neurons/physiology , Brain/physiology , Electrodes , Machine Learning
5.
Sci Data ; 10(1): 861, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38049462

ABSTRACT

Despite the importance of hypothalamic neurocircuits in regulating homeostatic and survival-related behaviors, our understanding of the intrinsic molecular identities of neural components involved in these complex multi-synaptic interactions remains limited. In this study, we constructed a Cre recombinase-dependent pseudorabies virus (PRVs) capable of crossing synapses, coupled with transcriptome analysis of single upstream neurons post-infection. By utilizing this retrograde nuclear Connect-seq (nuConnect-seq) approach, we generated a single nuclei RNA-seq (snRNA-seq) dataset of 1,533 cells derived from the hypothalamus of CRH-IRES-Cre (CRH-Cre) mice. To ensure the technical validity of our nuConnect-seq dataset, we employed a label transfer technique against an integrated reference dataset of postnatal mouse hypothalamus comprising 152,524 QC-passed cells. The uniqueness of our approach lies in the integration of diverse datasets for validation, providing a more nuanced diversity of hypothalamic cell types. The presented validated dataset may deepen our understanding of hypothalamic neurocircuits and underscore the essential role of comprehensive integrated transcriptomic data for technical validity.


Subject(s)
Herpesvirus 1, Suid , Transcriptome , Animals , Mice , Gene Expression Profiling/methods , Herpesvirus 1, Suid/genetics , Hypothalamus , Neurons/metabolism
6.
Mol Cells ; 46(12): 764-777, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38052492

ABSTRACT

Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.


Subject(s)
Antineoplastic Agents , Bacterial Toxins , Immunotoxins , Neoplasms , Single-Domain Antibodies , Animals , Mice , Humans , Exotoxins/genetics , Exotoxins/pharmacology , Exotoxins/chemistry , Immunotoxins/genetics , Immunotoxins/pharmacology , Immunotoxins/chemistry , Mesothelin , Single-Domain Antibodies/genetics , Single-Domain Antibodies/pharmacology , Bacterial Toxins/genetics , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Catalytic Domain , Cell Line, Tumor , ADP Ribose Transferases/genetics , ADP Ribose Transferases/chemistry , ADP Ribose Transferases/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/metabolism , Neoplasms/drug therapy
7.
Anim Cells Syst (Seoul) ; 27(1): 425-435, 2023.
Article in English | MEDLINE | ID: mdl-38125761

ABSTRACT

Perception and production of second-level temporal intervals are critical in several behavioral and cognitive processes, including adaptive anticipation, motor control, and social communication. These processes are impaired in several neurological and psychological disorders, such as Parkinson's disease and attention-deficit hyperactivity disorder. Although evidence indicates that second-level interval timing exhibit circadian patterns, it remains unclear whether the core clock machinery controls the circadian pattern of interval timing. To investigate the role of core clock molecules in interval timing capacity, we devised a behavioral assay called the interval timing task to examine prospective motor interval timing ability. In this task, the mouse produces two separate nose pokes in a pretrained second-level interval to obtain a sucrose solution as a reward. We discovered that interval perception in wild-type mice displayed a circadian pattern, with the best performance observed during the late active phase. To investigate whether the core molecular clock is involved in the circadian control of interval timing, we employed Bmal1 knockout mice (BKO) in the interval timing task. The interval production of BKO did not display any difference between early and late active phase, without reaching the optimal interval production level observed in wild-type. In summary, we report that the core clock gene Bmal1 is required for the optimal performance of prospective motor timing typically observed during the late part of the active period.

8.
Exp Neurobiol ; 32(4): 259-270, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37749927

ABSTRACT

Circadian rhythm is a 24-hour cycle of behavioral and physiological changes. Disrupted sleep-wake patterns and circadian dysfunction are common in patients of Alzheimer Disease (AD) and are closely related with neuroinflammation. However, it is not well known how circadian rhythm of immune cells is altered during the progress of AD. Previously, we found presenilin 2 (Psen2) N141I mutation, one of familial AD (FAD) risk genes, induces hyperimmunity through the epigenetic repression of REV-ERBα expression in microglia and bone marrow-derived macrophage (BMDM) cells. Here, we investigated whether repression of REV-ERBα is associated with dysfunction of immune cell-endogenous or central circadian rhythm by analyses of clock genes expression and cytokine secretion, bioluminescence recording of rhythmic PER2::LUC expression, and monitoring of animal behavioral rhythm. Psen2 N141I mutation down-regulated REV-ERBα and induced selective over-production of IL-6 (a well-known clock-dependent cytokine) following the treatment of toll-like receptor (TLR) ligands in microglia, astrocytes, and BMDM. Psen2 N141I mutation also lowered amplitude of intrinsic daily oscillation in these immune cells representatives of brain and periphery. Of interest, however, the period of daily rhythm remained intact in immune cells. Furthermore, analyses of the central clock and animal behavioral rhythms revealed that central clock remained normal without down-regulation of REV-ERBα. These results suggest that Psen2 N141I mutation induces hyperimmunity mainly through the suppression of REV-ERBα in immune cells, which have lowered amplitude but normal period of rhythmic oscillation. Furthermore, our data reveal that central circadian clock is not affected by Psen2 N141I mutation.

9.
Front Neurosci ; 17: 1161592, 2023.
Article in English | MEDLINE | ID: mdl-37638314

ABSTRACT

Recent developments in artificial neural networks and their learning algorithms have enabled new research directions in computer vision, language modeling, and neuroscience. Among various neural network algorithms, spiking neural networks (SNNs) are well-suited for understanding the behavior of biological neural circuits. In this work, we propose to guide the training of a sparse SNN in order to replace a sub-region of a cultured hippocampal network with limited hardware resources. To verify our approach with a realistic experimental setup, we record spikes of cultured hippocampal neurons with a microelectrode array (in vitro). The main focus of this work is to dynamically cut unimportant synapses during SNN training on the fly so that the model can be realized on resource-constrained hardware, e.g., implantable devices. To do so, we adopt a simple STDP learning rule to easily select important synapses that impact the quality of spike timing learning. By combining the STDP rule with online supervised learning, we can precisely predict the spike pattern of the cultured network in real-time. The reduction in the model complexity, i.e., the reduced number of connections, significantly reduces the required hardware resources, which is crucial in developing an implantable chip for the treatment of neurological disorders. In addition to the new learning algorithm, we prototype a sparse SNN hardware on a small FPGA with pipelined execution and parallel computing to verify the possibility of real-time replacement. As a result, we can replace a sub-region of the biological neural circuit within 22 µs using 2.5 × fewer hardware resources, i.e., by allowing 80% sparsity in the SNN model, compared to the fully-connected SNN model. With energy-efficient algorithms and hardware, this work presents an essential step toward real-time neuroprosthetic computation.

10.
Exp Mol Med ; 55(8): 1806-1819, 2023 08.
Article in English | MEDLINE | ID: mdl-37537215

ABSTRACT

Social interaction among conspecifics is essential for maintaining adaptive, cooperative, and social behaviors, along with survival among mammals. The 5-hydroxytryptamine (5-HT) neuronal system is an important neurotransmitter system for regulating social behaviors; however, the circadian role of 5-HT in social interaction behaviors is unclear. To investigate whether the circadian nuclear receptor REV-ERBα, a transcriptional repressor of the rate-limiting enzyme tryptophan hydroxylase 2 (Tph2) gene in 5-HT biosynthesis, may affect social interaction behaviors, we generated a conditional knockout (cKO) mouse by targeting Rev-Erbα in dorsal raphe (DR) 5-HT neurons (5-HTDR-specific REV-ERBα cKO) using the CRISPR/Cas9 gene editing system and assayed social behaviors, including social preference and social recognition, with a three-chamber social interaction test at two circadian time (CT) points, i.e., at dawn (CT00) and dusk (CT12). The genetic ablation of Rev-Erbα in DR 5-HTergic neurons caused impaired social interaction behaviors, particularly social preference but not social recognition, with no difference between the two CT points. This deficit of social preference induced by Rev-Erbα in 5-HTDR-specific mice is functionally associated with real-time elevated neuron activity and 5-HT levels at dusk, as determined by fiber-photometry imaging sensors. Moreover, optogenetic inhibition of DR to nucleus accumbens (NAc) 5-HTergic circuit restored the impairment of social preference in 5-HTDR-specific REV-ERBα cKO mice. These results suggest the significance of the circadian regulation of 5-HT levels by REV-ERBα in regulating social interaction behaviors.


Subject(s)
Circadian Rhythm , Nuclear Receptor Subfamily 1, Group D, Member 1 , Social Behavior , Animals , Mice , Circadian Rhythm/genetics , Dorsal Raphe Nucleus/metabolism , Mammals/metabolism , Mice, Knockout , Neurons/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Serotonin , Social Interaction
11.
Mol Med Rep ; 28(3)2023 Sep.
Article in English | MEDLINE | ID: mdl-37449501

ABSTRACT

Exosomes isolated from potato (Solanum tuberosum) exhibit the biophysical characteristics of exosomes observed in mammalian cells and microorganisms, as determined by dynamic light scattering analysis and transmission electron microscopy. In the present study, it was shown that potato exosomes (ExoPs) can penetrate keratinocyte HaCaT cells, as determined by confocal microscopy and flow cytometry. In addition, ExoPs can suppress the expression of the collagen­destroying enzymes MMP1, 2 and 9, and the inflammatory cytokines IL6 and TNF­α, while inducing the expression of glutathione S­transferase α 4, a cellular detoxifying enzyme, as revealed by reverse transcription­quantitative PCR. Furthermore, ExoPs promote HaCaT cell proliferation, exhibit in vitro antioxidant activity against the free radical 2,2­diphenyl­ß­picrylhydrazyl, and protect cells from hydrogen peroxide­induced cytotoxicity. ExoPs can also minimize the induction of photodamage initiated by ultraviolet B (UVB) irradiation, and have the tendency to cure the photodamage already incurred on cells by UVB irradiation. ExoPs also prevent collagen degradation as observed in the culture media of UVB­irradiated HaCaT cells. Collectively, ExoPs may protect and ameliorate photodamage in keratinocyte HaCaT cells.


Subject(s)
Exosomes , Solanum tuberosum , Humans , Cell Line , Collagen/metabolism , HaCaT Cells , Keratinocytes/metabolism , Mammals , Ultraviolet Rays/adverse effects
12.
Toxicon ; 230: 107157, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37196787

ABSTRACT

Crotamine, one of the major toxins present in the venom of the South American rattlesnake Crotalus durissus terrificus, exhibits potent cytotoxic properties and has been suggested for cancer therapy applications. However, its selectivity for cancer cells needs to be improved. This study designed and produced a novel recombinant immunotoxin, HER2(scFv)-CRT, composed of crotamine and single-chain Fv (scFv) derived from trastuzumab targeting human epidermal growth factor receptor 2 (HER2). The recombinant immunotoxin was expressed in Escherichia coli and purified using various chromatographic techniques. The cytotoxicity of HER2(scFv)-CRT was assessed in three breast cancer cell lines, demonstrating enhanced specificity and toxicity in HER2-expressing cells. These findings suggest that the crotamine-based recombinant immunotoxin has the potential to expand the repertoire of recombinant immunotoxin applications in cancer therapy.


Subject(s)
Crotalid Venoms , Immunotoxins , Neoplasms , Animals , Humans , Crotalid Venoms/chemistry , Crotalus , Immunotoxins/metabolism , Neoplasms/drug therapy , Cell Line, Tumor
13.
J Nutr ; 153(3): 691-702, 2023 03.
Article in English | MEDLINE | ID: mdl-36931749

ABSTRACT

BACKGROUND: Adipocyte dysregulation of lipid droplet (LD) metabolism caused by altered expression of LD proteins contributes to obesity-related metabolic diseases. OBJECTIVES: We aimed to investigate whether expression levels of PLIN1, CIDEA, and CIDEC were altered in adipose tissues of women with obesity and type 2 diabetes and whether their alterations were associated with metabolic risk factors. METHODS: Normal-weight (NW; 18.5 kg/m2 < BMI ≤ 25 kg/m2; n = 43), nondiabetic obese (OB; BMI > 30 kg/m2; n = 38), and diabetic obese (OB/DM; BMI > 30 kg/m2, fasting glucose ≥ 126 mg/dL, HbA1c ≥ 6.5%; n = 22) women were recruited. Metabolic parameters were measured, and expressions of PLIN1, CIDEA, CIDEC, and obesity-related genes were quantified in abdominal subcutaneous (SAT) and visceral adipose tissues (VAT). Effects of proinflammatory cytokines, endoplasmic reticulum (ER) stress inducers, and metabolic improvement agents on LD protein gene expressions were investigated in human adipocytes. RESULTS: PLIN1, CIDEA, and CIDEC expressions were lower in SAT and higher in VAT in OB subjects relative to NW subjects; however, they were suppressed in both fat depots in OB/DM subjects relative to OB (P < 0.05). Across the entire cohort, whereas VAT PLIN1 (r = 0.349) and CIDEC expressions (r = 0.282) were positively associated with BMI (P < 0.05), SAT PLIN1 (r = -0.390) and CIDEA expressions (r = -0.565) were inversely associated. After adjustment for BMI, some or all of the adipose LD protein gene expressions were negatively associated with fasting glucose (r = -0.259 or higher) and triglyceride levels (r = -0.284 or higher) and positively associated with UCP1 expression (r = 0.353 or higher) (P < 0.05). In adipocytes, LD protein gene expressions were 55-70% downregulated by increased proinflammatory cytokines and ER stress but 2-4-fold upregulated by the metabolic improvement agents exendin-4 and dapagliflozin (P < 0.05). CONCLUSIONS: The findings suggest that reduction of adipose LD protein expression is involved in the pathogenesis of metabolic disorders in women with obesity and type 2 diabetes and that increasing LD protein expression in adipocytes could control development of metabolic disorders.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Female , Adult , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Lipid Droplets/metabolism , Lipid Droplets/pathology , Obesity/metabolism , Risk Factors , Cytokines/metabolism , Glucose/metabolism , Lipid Droplet Associated Proteins/metabolism , Intra-Abdominal Fat/metabolism
14.
ACS Biomater Sci Eng ; 9(3): 1377-1390, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36802481

ABSTRACT

Despite numerous studies on various surface modifications on titanium and its alloys, it remains unclear what kind of titanium-based surface modifications are capable of controlling cell activity. This study aimed to understand the mechanism at the cellular and molecular levels and investigate the in vitro response of osteoblastic MC3T3-E1 cultured on the Ti-6Al-4V surface modified by plasma electrolytic oxidation (PEO) treatment. A Ti-6Al-4V surface was prepared by PEO at 180, 280, and 380 V for 3 or 10 min in an electrolyte containing Ca2+/Pi ions. Our results showed that PEO-treated Ti-6Al-4V-Ca2+/Pi surfaces enhanced the cell attachment and differentiation of MC3T3-E1 compared to the untreated Ti-6Al-4V control but did not affect cytotoxicity as shown by cell proliferation and cell death. Interestingly, on the Ti-6Al-4V-Ca2+/Pi surface treated by PEO at 280 V for 3 or 10 min, MC3T3-E1 showed a higher initial adhesion and mineralization. In addition, the alkaline phosphatase (ALP) activity significantly increased in MC3T3-E1 on the PEO-treated Ti-6Al-4V-Ca2+/Pi (280 V for 3 or 10 min). In RNA-seq analysis, the expression of dentin matrix protein 1 (DMP1), sortilin 1 (Sort1), signal-induced proliferation-associated 1 like 2 (SIPA1L2), and interferon-induced transmembrane protein 5 (IFITM5) was induced during the osteogenic differentiation of MC3T3-E1 on the PEO-treated Ti-6Al-4V-Ca2+/Pi. DMP1 and IFITM5 silencing decreased the expression of bone differentiation-related mRNAs and proteins and ALP activity in MC3T3-E1. These results suggest that the PEO-treated Ti-6Al-4V-Ca2+/Pi surface induces osteoblast differentiation by regulating the expression of DMP1 and IFITM5. Therefore, surface microstructure modification through PEO coatings with Ca2+/Pi ions could be used as a valuable method to improve biocompatibility properties of titanium alloys.


Subject(s)
Osteogenesis , Titanium , Titanium/chemistry , Titanium/pharmacology , Interferons , Cell Differentiation , Alloys/chemistry
15.
ACS Biomater Sci Eng ; 9(1): 197-210, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36576437

ABSTRACT

This study reports synchronized improvements in the protective and bioactive properties of Ti-6Al-4V alloy through the formation of titania-based inorganic layers by considering the role of cellulose microcrystalline (CMC) additive into account. Acetate-phosphate-based electrolyte with cellulose CMC is formulated for the first time to modify the porous structure of the oxide layers made via plasma electrolysis of Ti-6Al-4V alloy. The presence of CMC (0, 1, 2, 3 g/L) changed the characteristics of plasma discharges where porous oxide layers with different pore sizes and surface roughness were obtained. A rough oxide layer with large pores was found in the 3 g/L CMC, while a slightly smoother oxide layer with smaller pores was obtained in the case of 2 g/L CMC. The -OH groups in CMC would facilitate the formation of an adsorption layer on the substrate surface, affecting the sparking behavior during plasma electrolysis (PE). Due to a synergy between controlled microstructure, surface roughness, and the insertion of bioactive phases, the coated samples in CMC-containing electrolytes displayed protective and bioactive properties simultaneously. Based on the obtained results, the samples coated in CMC-containing electrolytes can be used as safe implants to replace missing teeth in dental applications.


Subject(s)
Alloys , Prostheses and Implants , Alloys/chemistry , Oxides
16.
Sci Adv ; 8(41): eabo7527, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36223467

ABSTRACT

Social animals expend considerable energy to maintain social bonds throughout their life. Male and female mice show sexually dimorphic behaviors, yet the underlying neural mechanisms of sociability and their dysregulation during social disconnection remain unknown. Dopaminergic neurons in dorsal raphe nucleus (DRNTH) is known to contribute to a loneliness-like state and modulate sociability. We identified that activated subpopulations in DRNTH and nucleus accumbens shell (NAcsh) during 24 hours of social isolation underlie the increase in isolation-induced sociability in male but not in female mice. This effect was reversed by chemogenetically and optogenetically inhibiting the DRNTH-NAcsh circuit. Moreover, synaptic connectivity among the activated neuronal ensembles in this circuit was increased, primarily in D1 receptor-expressing neurons in NAcsh. The increase in synaptic density functionally correlated with elevated dopamine release into NAcsh. Overall, specific synaptic ensembles in DRNTH-NAcsh mediate sex differences in isolation-induced sociability, indicating that sex-dependent circuit dynamics underlie the expression of sexually dimorphic behaviors.

17.
Obesity (Silver Spring) ; 30(7): 1430-1441, 2022 07.
Article in English | MEDLINE | ID: mdl-35722819

ABSTRACT

OBJECTIVE: Leukocyte cell-derived chemotaxin 2 (LECT2) is an obesity-upregulated hepatokine inducing skeletal muscle insulin resistance. The study's aim was to explore whether LECT2 is expressed in human adipose tissue and whether the expression is dysregulated during obesity and associated with obesity-related metabolic disorders. METHODS: This study measured metabolic parameters, serum LECT2, and expression of LECT2 and CD209, a gene encoding a putative receptor for LECT2, in abdominal subcutaneous and visceral adipose tissues in women with obesity (with or without type 2 diabetes) and women with normal weight. The expression/secretion of LECT2 and its putative effects were assessed in human adipocytes. RESULTS: Adipose tissue LECT2 mRNA and serum LECT2 were higher in women with obesity and were significantly correlated with parameters related to insulin resistance. LECT2 was mainly expressed by adipocytes. Both LECT2 and CD209 expression was higher in adipocytes from women with obesity. Incubating adipocytes with substances mimicking the microenvironment of obesity adipose tissue increased LECT2 expression/secretion. LECT2 treatment of adipocytes suppressed insulin-stimulated Akt phosphorylation; it reduced adiponectin (ADIPOQ) and increased leptin (LEP) expression in a CD209-dependent manner. CONCLUSIONS: This study demonstrates that LECT2 expression in adipose tissue is high in patients with obesity and associated with insulin resistance and suggests that adipocyte-derived LECT2 may contribute to adipose tissue dysfunction.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Insulin Resistance/genetics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Obesity/genetics , Obesity/metabolism , Republic of Korea/epidemiology
19.
Nat Commun ; 13(1): 1972, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35418126

ABSTRACT

Hyperimmunity drives the development of Alzheimer disease (AD). The immune system is under the circadian control, and circadian abnormalities aggravate AD progress. Here, we investigate how an AD-linked mutation deregulates expression of circadian genes and induces cognitive decline using the knock-in (KI) mice heterozygous for presenilin 2 N141I mutation. This mutation causes selective overproduction of clock gene-controlled cytokines through the DNA hypermethylation-mediated repression of REV-ERBα in innate immune cells. The KI/+ mice are vulnerable to otherwise innocuous, mild immune challenges. The antipsychotic chlorpromazine restores the REV-ERBα level by normalizing DNA methylation through the inhibition of PI3K/AKT1 pathway, and prevents the overexcitation of innate immune cells and cognitive decline in KI/+ mice. These results highlight a pathogenic link between this AD mutation and immune cell overactivation through the epigenetic suppression of REV-ERBα.


Subject(s)
Epigenetic Repression , Nuclear Receptor Subfamily 1, Group D, Member 1 , Presenilin-2/genetics , Animals , Circadian Rhythm/physiology , Immunity , Mice , Mutation , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
20.
Neurotherapeutics ; 19(2): 592-607, 2022 03.
Article in English | MEDLINE | ID: mdl-35322351

ABSTRACT

Parkinson's disease is a neurodegenerative disease characterized by progressive dopaminergic neuronal loss. Motor deficits experienced by patients with Parkinson's disease are well documented, but non-motor symptoms, including mood disorders associated with circadian disturbances, are also frequent features. One common phenomenon is "sundowning syndrome," which is characterized by the occurrence of neuropsychiatric symptoms at a specific time (dusk), causing severe quality of life challenges. This study aimed to elucidate the underlying mechanisms of sundowning syndrome in Parkinson's disease and their molecular links with the circadian clock. We demonstrated that 6-hydroxydopamine (6-OHDA)-lesioned mice, as Parkinson's disease mouse model, exhibit increased depression- and anxiety-like behaviors only at dawn (the equivalent of dusk in human). Administration of REV-ERBα antagonist, SR8278, exerted antidepressant and anxiolytic effects in a circadian time-dependent manner in 6-OHDA-lesioned mice and restored the circadian rhythm of mood-related behaviors. 6-OHDA-lesion altered DAergic-specific Rev-erbα and Nurr1 transcription, and atypical binding activities of REV-ERBα and NURR1, which are upstream nuclear receptors for the discrete tyrosine hydroxylase promoter region. SR8278 treatment restored the binding activities of REV-ERBα and NURR1 to the tyrosine hydroxylase promoter and the induction of enrichment of the R/N motif, recognized by REV-ERBα and NURR1, as revealed by ATAC-sequencing; therefore, tyrosine hydroxylase expression was elevated in the ventral tegmental area of 6-OHDA-injected mice, especially at dawn. These results indicate that REV-ERBα is a potential therapeutic target, and its antagonist, SR8278, is a potential drug for mood disorders related to circadian disturbances, namely sundowning syndrome, in Parkinson's disease.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Animals , Humans , Isoquinolines , Mice , Mood Disorders/drug therapy , Mood Disorders/etiology , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Oxidopamine/toxicity , Parkinson Disease/pathology , Quality of Life , Thiophenes , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...