Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(18): e2311154, 2024 May.
Article in English | MEDLINE | ID: mdl-38174953

ABSTRACT

Bioelectronic implants delivering electrical stimulation offer an attractive alternative to traditional pharmaceuticals in electrotherapy. However, achieving simple, rapid, and cost-effective personalization of these implants for customized treatment in unique clinical and physical scenarios presents a substantial challenge. This challenge is further compounded by the need to ensure safety and minimal invasiveness, requiring essential attributes such as flexibility, biocompatibility, lightness, biodegradability, and wireless stimulation capability. Here, a flexible, biodegradable bioelectronic paper with homogeneously distributed wireless stimulation functionality for simple personalization of bioelectronic implants is introduced. The bioelectronic paper synergistically combines i) lead-free magnetoelectric nanoparticles (MENs) that facilitate electrical stimulation in response to external magnetic field and ii) flexible and biodegradable nanofibers (NFs) that enable localization of MENs for high-selectivity stimulation, oxygen/nutrient permeation, cell orientation modulation, and biodegradation rate control. The effectiveness of wireless electrical stimulation in vitro through enhanced neuronal differentiation of neuron-like PC12 cells and the controllability of their microstructural orientation are shown. Also, scalability, design flexibility, and rapid customizability of the bioelectronic paper are shown by creating various 3D macrostructures using simple paper crafting techniques such as cutting and folding. This platform holds promise for simple and rapid personalization of temporary bioelectronic implants for minimally invasive wireless stimulation therapies.


Subject(s)
Absorbable Implants , Magnetics , Precision Medicine , Wireless Technology , Paper , Precision Medicine/instrumentation , Humans , Male , Animals , Rats , Brain , Electronics, Medical/instrumentation
2.
Adv Mater ; 36(4): e2304302, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37850948

ABSTRACT

Inspired by the adaptive features exhibited by biological organisms like the octopus, soft machines that can tune their shape and mechanical properties have shown great potential in applications involving unstructured and continuously changing environments. However, current soft machines are far from achieving the same level of adaptability as their biological counterparts, hampered by limited real-time tunability and severely deficient reprogrammable space of properties and functionalities. As a steppingstone toward fully adaptive soft robots and smart interactive machines, an encodable multifunctional material that uses graphical stiffness patterns is introduced here to in situ program versatile mechanical capabilities without requiring additional infrastructure. Through independently switching the digital binary stiffness states (soft or rigid) of individual constituent units of a simple auxetic structure with elliptical voids, in situ and gradational tunability is demonstrated here in various mechanical qualities such as shape-shifting and -memory, stress-strain response, and Poisson's ratio under compressive load as well as application-oriented functionalities such as tunable and reusable energy absorption and pressure delivery. This digitally programmable material is expected to pave the way toward multienvironment soft robots and interactive machines.

3.
ACS Appl Mater Interfaces ; 15(51): 59776-59786, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38086780

ABSTRACT

Incorporating perception into robots or objects holds great potential to revolutionize daily human life. To achieve this, critical factors include the design of an integrable three-dimensional (3D) soft sensor with self-powering capability, a wide working range, and tuneable functionalities. Here, we introduce a highly compressible 3D-printed soft magnetoelastic sensor with a wide strain sensing range. Inspired by the lattice metamaterial, which offers a highly porous structure with tuneable mechanical properties, we realized a remarkably compliant 3D self-powering sensor. Using magnetoelastic composite materials and 3D printing combined with sacrificial molding, a broad design space for constituent materials and structures is investigated, allowing for tuneable mechanical properties and sensor performances. These sensors are successfully integrated with two robotic systems as the robot operation and perception units, enabling robot control and recognition of diverse physical interactions with a user. Overall, we believe that this work represents a cornerstone for compliant 3D self-powered soft sensors, giving impetus to the development of advanced human-machine interfaces.


Subject(s)
Printing, Three-Dimensional , Humans , Porosity
5.
Nat Commun ; 14(1): 3942, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37402707

ABSTRACT

Soft inflatable robots are a promising paradigm for applications that benefit from their inherent safety and adaptability. However, for perception, complex connections of rigid electronics both in hardware and software remain the mainstay. Although recent efforts have created soft analogs of individual rigid components, the integration of sensing and control systems is challenging to achieve without compromising the complete softness, form factor, or capabilities. Here, we report a soft self-sensing tensile valve that integrates the functional capabilities of sensors and control valves to directly transform applied tensile strain into distinctive steady-state output pressure states using only a single, constant pressure source. By harnessing a unique mechanism, "helical pinching", we derive physical sharing of both sensing and control valve structures, achieving all-in-one integration in a compact form factor. We demonstrate programmability and applicability of our platform, illustrating a pathway towards fully soft, electronics-free, untethered, and autonomous robotic systems.

6.
Nat Commun ; 14(1): 3597, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328461

ABSTRACT

Pen-drawing is an intuitive, convenient, and creative fabrication method for delivering emergent and adaptive design to real devices. To demonstrate the application of pen-drawing to robot construction, we developed pen-drawn Marangoni swimmers that perform complex programmed tasks using a simple and accessible manufacturing process. By simply drawing on substrates using ink-based Marangoni fuel, the swimmers demonstrate advanced robotic motions such as polygon and star-shaped trajectories, and navigate through maze. The versatility of pen-drawing allows the integration of the swimmers with time-varying substrates, enabling multi-step motion tasks such as cargo delivery and return to the original place. We believe that our pen-based approach will significantly expand the potential applications of miniaturized swimming robots and provide new opportunities for simple robotic implementations.


Subject(s)
Robotics , Motion , Swimming
7.
Sci Adv ; 7(13)2021 Mar.
Article in English | MEDLINE | ID: mdl-33762344

ABSTRACT

Pen drawing is a method that allows simple, inexpensive, and intuitive two-dimensional (2D) fabrication. To integrate such advantages of pen drawing in fabricating 3D objects, we developed a 3D fabrication technology that can directly transform pen-drawn 2D precursors into 3D geometries. 2D-to-3D transformation of pen drawings is facilitated by surface tension-driven capillary peeling and floating of dried ink film when the drawing is dipped into an aqueous monomer solution. Selective control of the floating and anchoring parts of a 2D precursor allowed the 2D drawing to transform into the designed 3D structure. The transformed 3D geometry can then be fixed by structural reinforcement using surface-initiated polymerization. By transforming simple pen-drawn 2D structures into complex 3D structures, our approach enables freestyle rapid prototyping via pen drawing, as well as mass production of 3D objects via roll-to-roll processing.

8.
Sci Robot ; 5(45)2020 08 26.
Article in English | MEDLINE | ID: mdl-33022636

ABSTRACT

Tensegrity structures provide both structural integrity and flexibility through the combination of stiff struts and a network of flexible tendons. These structures exhibit useful properties: high stiffness-to-mass ratio, controllability, reliability, structural flexibility, and large deployment. The integration of smart materials into tensegrity structures would provide additional functionality and may improve existing properties. However, manufacturing approaches that generate multimaterial parts with intricate three-dimensional (3D) shapes suitable for such tensegrities are rare. Furthermore, the structural complexity of tensegrity systems fabricated through conventional means is generally limited because these systems often require manual assembly. Here, we report a simple approach to fabricate tensegrity structures made of smart materials using 3D printing combined with sacrificial molding. Tensegrity structures consisting of monolithic tendon networks based on smart materials supported by struts could be realized without an additional post-assembly process using our approach. By printing tensegrity with coordinated soft and stiff elements, we could use design parameters (such as geometry, topology, density, coordination number, and complexity) to program system-level mechanics in a soft structure. Last, we demonstrated a tensegrity robot capable of walking in any direction and several tensegrity actuators by leveraging smart tendons with magnetic functionality and the programmed mechanics of tensegrity structures. The physical realization of complex tensegrity metamaterials with programmable mechanical components can pave the way toward more algorithmic designs of 3D soft machines.

9.
Nano Lett ; 20(7): 5185-5192, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32491865

ABSTRACT

Soft magnetic materials have shown promise in diverse applications due to their fast response, remote actuation, and large penetration range for various conditions. Herein, a new soft magnetic composite material capable of reprogramming its magnetization profile without changing intrinsic magnetic properties of embedded magnetic particles or the molecular property of base material is reported. This composite contains magnetic microspheres in an elastomeric matrix, and the magnetic microspheres are composed of ferromagnetic microparticles encapsulated with oligomeric-PEG. By controlling the encapsulating polymer phase transition, the magnetization profiles of the magnetic composite can be rewritten by physically realigning the ferromagnetic particles. Diverse magnetic actuators with reprogrammable magnetization profiles are developed to demonstrate the complete reprogramming of complex magnetization profile.

SELECTION OF CITATIONS
SEARCH DETAIL
...