Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
ACS Chem Biol ; 19(5): 1180-1193, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38652683

ABSTRACT

C. elegans numr-1/2 (nuclear-localized metal-responsive) is an identical gene pair encoding a nuclear protein previously shown to be activated by cadmium and disruption of the integrator RNA metabolism complex. We took a chemical genetic approach to further characterize regulation of this novel metal response by screening 41,716 compounds and extracts for numr-1p::GFP activation. The most potent activator was chaetocin, a fungal 3,6-epidithiodiketopiperazine (ETP) with promising anticancer activity. Chaetocin activates numr-1/2 strongly in the alimentary canal but is distinct from metal exposure, because it represses canonical cadmium-responsive metallothionine genes. Chaetocin has diverse targets in cancer cells including thioredoxin reductase, histone lysine methyltransferase, and acetyltransferase p300/CBP; further work is needed to identify the mechanism in C. elegans as genetic disruption and RNAi screening of homologues did not induce numr-1/2 in the alimentary canal and chaetocin did not affect markers of integrator dysfunction. We demonstrate that disulfides in chaetocin and chetomin, a dimeric ETP analog, are required to induce numr-1/2. ETP monomer gliotoxin, despite possessing a disulfide linkage, had almost no effect on numr-1/2, suggesting a dimer requirement. Chetomin inhibits C. elegans growth at low micromolar levels, and loss of numr-1/2 increases sensitivity; C. elegans and Chaetomiaceae fungi inhabit similar environments raising the possibility that numr-1/2 functions as a defense mechanism. There is no direct orthologue of numr-1/2 in humans, but RNaseq suggests that chaetocin affects expression of cellular processes linked to stress response and metal homeostasis in colorectal cancer cells. Our results reveal interactions between metal response gene regulation and ETPs and identify a potential mechanism of resistance to this versatile class of preclinical compounds.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Homeostasis , Mycotoxins , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Animals , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Mycotoxins/pharmacology , Mycotoxins/metabolism , Homeostasis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Piperazines/pharmacology , Piperazines/chemistry , Humans , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Cadmium/pharmacology
2.
PLoS One ; 18(5): e0285328, 2023.
Article in English | MEDLINE | ID: mdl-37155688

ABSTRACT

In epidermal tissues, extracellular matrices (ECMs) function as barriers between the organism and environment. Despite being at the interface with the environment, little is known about the role of animal barrier ECMs in sensing stress and communicating with cytoprotective gene pathways in neighboring cells. We and others have identified a putative damage sensor in the C. elegans cuticle that regulates osmotic, detoxification, and innate immune response genes. This pathway is associated with circumferential collagen bands called annular furrows; mutation or loss of furrow collagens causes constitutive activation of osmotic, detoxification, and innate immune response genes. Here, we performed a genome-wide RNAi screen for modulators of osmotic stress response gene gpdh-1 in a furrow collagen mutant strain. RNAi of six genes identified in this screen were tested under other conditions and for effects on other stress responses. The functions of these genes suggest negative feedback within osmolyte accumulation pathways and interactions with ATP homeostasis and protein synthesis. Loss of these gpdh-1 modulators had distinct effects on canonical detoxification and innate immune response genes.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , RNA Interference , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Feedback , Extracellular Matrix/metabolism , Collagen/metabolism
3.
Aging Cell ; 22(4): e13795, 2023 04.
Article in English | MEDLINE | ID: mdl-36797658

ABSTRACT

CCR4-NOT is a versatile eukaryotic protein complex that controls multiple steps in gene expression regulation from synthesis to decay. In yeast, CCR4-NOT has been implicated in stress response regulation, though this function in other organisms remains unclear. In a genome-wide RNAi screen, we identified a subunit of the CCR4-NOT complex, ccf-1, as a requirement for the C. elegans transcriptional response to cadmium and acrylamide stress. Using whole-transcriptome RNA sequencing, we show that the knockdown of ccf-1 attenuates the activation of a broad range of stress-protective genes in response to cadmium and acrylamide, including those encoding heat shock proteins and xenobiotic detoxification. Consistently, survival assays show that the knockdown of ccf-1 decreases C. elegans stress resistance and normal lifespan. A yeast 2-hybrid screen using a CCF-1 bait identified the homeobox transcription factor PAL-1 as a physical interactor. Knockdown of pal-1 inhibits the activation of ccf-1 dependent stress genes and reduces C. elegans stress resistance. Gene expression analysis reveals that knockdown of ccf-1 and pal-1 attenuates the activation of elt-2 and elt-3 under stress that encode master transcriptional co-regulators of stress response in the C. elegans, and that overexpression of ELT-2 can suppress ccf-1's requirement for gene transcription in a stress-dependent manner. Our findings reveal a new role for CCR4-NOT in the environmental stress response and define its role in stress resistance and longevity in C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Saccharomyces cerevisiae Proteins , Animals , Acrylamides , Cadmium/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Longevity/genetics , Ribonucleases/genetics , Ribonucleases/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation
4.
PLoS One ; 17(8): e0272452, 2022.
Article in English | MEDLINE | ID: mdl-35951614

ABSTRACT

Physiological responses to the environment, disease, and aging vary by sex in many animals, but mechanisms of dimorphism have only recently begun to receive careful attention. The genetic model nematode Caenorhabditis elegans has well-defined mechanisms of stress response, aging, and sexual differentiation. C. elegans has males, but the vast majority of research only uses hermaphrodites. We found that males of the standard N2 laboratory strain were more resistant to hyperosmolarity, heat, and a natural pro-oxidant than hermaphrodites when in mixed-sex groups. Resistance to heat and pro-oxidant were also male-biased in three genetically and geographically diverse C. elegans strains consistent with a species-wide dimorphism that is not specific to domestication. N2 males were also more resistant to heat and pro-oxidant when keep individually indicating that differences in resistance do not require interactions between worms. We found that males induce canonical stress response genes by similar degrees and in similar tissues as hermaphrodites suggesting the importance of other mechanisms. We find that resistance to heat and pro-oxidant are influenced by the sex differentiation transcription factor TRA-1 suggesting that downstream organ differentiation pathways establish differences in stress resistance. Environmental stress influences survival in natural environments, degenerative disease, and aging. Understanding mechanisms of stress response dimorphism can therefore provide insights into sex-specific population dynamics, disease, and longevity.


Subject(s)
Caenorhabditis elegans Proteins , Disorders of Sex Development , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Female , Longevity , Male , Reactive Oxygen Species/metabolism , Sex Characteristics
5.
G3 (Bethesda) ; 12(11)2022 11 04.
Article in English | MEDLINE | ID: mdl-36000892

ABSTRACT

Mutation or loss of 6 extracellular matrix collagen genes disrupts annular furrows in adult C. elegans cuticles, causes a wide "Dumpy" body morphology, and activates osmotic, detoxification, and antimicrobial defense genes. High environmental osmolarity reduces internal turgor pressure, physically distorts the epidermis, and activates the same stress responses. Collagen gene mutations that cause Dumpy without furrow disruption do not activate stress responses. These results are consistent with an extracellular damage sensor associated with furrows in the adult cuticle that regulates environmental stress responses in adjacent cells. Several cuticle characteristics change between molts, but all stages have annular furrows and express furrow collagen genes. We compared body shape, furrow organization imaged with differential interference contrast microscopy, and stress response gene expression in furrow collagen gene mutants at all postembryonic stages. We find that most body shape and furrow disorganization phenotypes start at the L3 stage and increase in severity with each molt afterwards. Stress response genes were induced the strongest in adults, correlating with the greatest Dumpy and furrow phenotypes. Although weaker than in adults, osmolyte transporter gene hmit-1.1 and antimicrobial gene nlp-29 were also induced in some early larvae that had weak or undetectable cuticle phenotypes. Our data are consistent with progressive cuticle phenotypes in which each new cuticle is at least partially directed by organization of the former cuticle. Gene expression and cuticle data support the role of furrow disruption as a signal in L4 larvae and adults, but also suggest a role for other cuticle organization or epidermal cell effects in early larvae.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Collagen/genetics , Phenotype , Larva/genetics , Larva/metabolism
6.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-36606078

ABSTRACT

Nematode cuticles are extracellular matrices (ECMs) that function as structural support and permeability barriers. Genetic disruption of specific cuticle collagen structures or secreted epidermal proteins in C. elegans activates stress response genes in epithelial cells suggesting the presence of an extracellular damage signaling mechanism. Cuticles are replaced during development via molting but investigations of extracellular signaling to stress responses have focused on adults. In our current study, we measured cuticle phenotypes and stress response gene expression in all post-embryonic stages of mutant strains for a collagen and two secreted epidermal proteins to gain insights into developmental patterns.

7.
Genetics ; 220(3)2022 03 03.
Article in English | MEDLINE | ID: mdl-34849856

ABSTRACT

We and others previously identified circumferential bands of collagen named annular furrows as key components of a damage sensor in the cuticle of Caenorhabditis elegans that regulates cytoprotective genes. Mutation or loss of noncollagen secreted proteins OSM-7, OSM-8, and OSM-11 activate the same cytoprotective responses without obvious changes to the cuticle indicating that other extracellular proteins are involved. Here, we used RNAi screening to identify protein kinase DRL-1 as a key modulator of cytoprotective gene expression and stress resistance in furrow and extracellular OSM protein mutants. DRL-1 functions downstream from furrow disruption and is expressed in cells that induce cytoprotective genes. DRL-1 is not required for the expression of cytoprotective genes under basal or oxidative stress conditions consistent with specificity to extracellular signals. DRL-1 was previously shown to regulate longevity via a "Dietary Restriction-Like" state, but it functions downstream from furrow disruption by a distinct mechanism. The kinase domain of DRL-1 is related to mammalian MEKK3, and MEKK3 is recruited to a plasma membrane osmosensor complex by a scaffold protein. In C. elegans, DRL-1 contains an atypical hydrophobic C-terminus with predicted transmembrane domains and is constitutively expressed at or near the plasma membrane where it could function to receive extracellular damage signals for cells that mount cytoprotective responses.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Extracellular Matrix/metabolism , Longevity/genetics , Mammals , RNA Interference
8.
Biochem Mol Biol Educ ; 48(5): 516-517, 2020 09.
Article in English | MEDLINE | ID: mdl-32823376

ABSTRACT

The rush to remote learning during the COVD-19 pandemic has caused instructors to rapidly adapt mechanisms of learning. Here, I describe an online concept mapping activity for membrane transport mechanisms that can be accomplished by students working together remotely and either synchronously or asynchronously.


Subject(s)
Biochemistry/education , COVID-19 , Cell Membrane , Education, Distance , Learning , Pandemics , Biological Transport, Active , Curriculum , Humans , Students
10.
BMC Biol ; 17(1): 56, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31311534

ABSTRACT

BACKGROUND: Adaptive responses to stress are essential for cell and organismal survival. In metazoans, little is known about the impact of environmental stress on RNA homeostasis. RESULTS: By studying the regulation of a cadmium-induced gene named numr-1 in Caenorhabditis elegans, we discovered that disruption of RNA processing acts as a signal for environmental stress. We find that NUMR-1 contains motifs common to RNA splicing factors and influences RNA splicing in vivo. A genome-wide screen reveals that numr-1 is strongly and specifically induced by silencing of genes that function in basal RNA metabolism including subunits of the metazoan integrator complex. Human integrator processes snRNAs for functioning with splicing factors, and we find that silencing of C. elegans integrator subunits disrupts snRNA processing, causes aberrant pre-mRNA splicing, and induces the heat shock response. Cadmium, which also strongly induces numr-1, has similar effects on RNA and the heat shock response. Lastly, we find that heat shock factor-1 is required for full numr-1 induction by cadmium. CONCLUSION: Our results are consistent with a model in which disruption of integrator processing of RNA acts as a molecular damage signal initiating an adaptive stress response mediated by heat shock factor-1. When numr-1 is induced via this pathway in C. elegans, its function in RNA metabolism may allow it to mitigate further damage and thereby promote tolerance to cadmium.


Subject(s)
Cadmium/toxicity , Caenorhabditis elegans/physiology , Gene Expression Regulation , Heat-Shock Response/physiology , RNA Processing, Post-Transcriptional/physiology , RNA Splicing , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Heat-Shock Response/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , Stress, Physiological
12.
Int J Parasitol Drugs Drug Resist ; 8(2): 312-319, 2018 08.
Article in English | MEDLINE | ID: mdl-29793058

ABSTRACT

Parasitic nematodes infect over 1/4 th of the human population and are a major burden on livestock and crop production. Benzimidazole class anthelmintics are widely used to treat infections, but resistance is a widespread problem. Mutation of genes encoding the benzimidazole target ß-tubulin is a well-established mechanism of resistance, but recent evidence suggests that metabolism of the drugs may also occur. Our objective was to investigate contributions of the detoxification-response transcription factor SKN-1 to anthelmintic drug resistance using C. elegans. We find that skn-1 mutations alter EC50 of the common benzimidazole albendazole in motility assays by 1.5-1.7 fold. We also identify ugt-22 as a detoxification gene associated with SKN-1 that influences albendazole efficacy. Mutation and overexpression of ugt-22 alter albendazole EC50 by 2.3-2.5-fold. The influence of a nematode UGT on albendazole efficacy is consistent with recent studies demonstrating glucose conjugation of benzimidazoles.


Subject(s)
Albendazole/pharmacology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , DNA-Binding Proteins/genetics , Inactivation, Metabolic/genetics , Transcription Factors/genetics , Albendazole/metabolism , Animals , Anthelmintics/metabolism , Anthelmintics/pharmacology , Caenorhabditis elegans Proteins/metabolism , Drug Resistance/genetics , Mutation , Tubulin/genetics
13.
Genetics ; 208(4): 1467-1482, 2018 04.
Article in English | MEDLINE | ID: mdl-29487136

ABSTRACT

Extracellular matrix barriers and inducible cytoprotective genes form successive lines of defense against chemical and microbial environmental stressors. The barrier in nematodes is a collagenous extracellular matrix called the cuticle. In Caenorhabditis elegans, disruption of some cuticle collagen genes activates osmolyte and antimicrobial response genes. Physical damage to the epidermis also activates antimicrobial responses. Here, we assayed the effect of knocking down genes required for cuticle and epidermal integrity on diverse cellular stress responses. We found that disruption of specific bands of collagen, called annular furrows, coactivates detoxification, hyperosmotic, and antimicrobial response genes, but not other stress responses. Disruption of other cuticle structures and epidermal integrity does not have the same effect. Several transcription factors act downstream of furrow loss. SKN-1/Nrf and ELT-3/GATA are required for detoxification, SKN-1/Nrf is partially required for the osmolyte response, and STA-2/Stat and ELT-3/GATA for antimicrobial gene expression. Our results are consistent with a cuticle-associated damage sensor that coordinates detoxification, hyperosmotic, and antimicrobial responses through overlapping, but distinct, downstream signaling.


Subject(s)
Caenorhabditis elegans/physiology , Environment , Stress, Physiological , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Extracellular Matrix/metabolism , Gene Expression Profiling , Gene-Environment Interaction , High-Throughput Nucleotide Sequencing , Inactivation, Metabolic/genetics , Osmosis , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome , Transgenes
14.
Genetics ; 206(2): 859-871, 2017 06.
Article in English | MEDLINE | ID: mdl-28341649

ABSTRACT

The transcription factor SKN-1 (Skinhead family member-1) in Caenorhabditis elegans is a homolog of the mammalian Nrf-2 protein and functions to promote oxidative stress resistance and longevity. SKN-1 mediates protection from reactive oxygen species (ROS) via the transcriptional activation of genes involved in antioxidant defense and phase II detoxification. Although many core regulators of SKN-1 have been identified, much remains unknown about this complex signaling pathway. We carried out an ethyl methanesulfonate (EMS) mutagenesis screen and isolated six independent mutants with attenuated SKN-1-dependent gene activation in response to acrylamide. All six were found to contain mutations in F46F11.6/xrep-4 (xenobiotics response pathways-4), which encodes an uncharacterized F-box protein. Loss of xrep-4 inhibits the skn-1-dependent expression of detoxification genes in response to prooxidants and decreases survival of oxidative stress, but does not shorten life span under standard culture conditions. XREP-4 interacts with the ubiquitin ligase component SKR-1 and the SKN-1 principal repressor WDR-23, and knockdown of xrep-4 increases nuclear localization of a WDR-23::GFP fusion protein. Furthermore, a missense mutation in the conserved XREP-4 F-box domain that reduces interaction with SKR-1 but not WDR-23 strongly attenuates SKN-1-dependent gene activation. These results are consistent with XREP-4 influencing the SKN-1 stress response by functioning as a bridge between WDR-23 and the ubiquitin ligase component SKR-1.


Subject(s)
Caenorhabditis elegans Proteins/genetics , DNA-Binding Proteins/genetics , F-Box Proteins/genetics , Nuclear Proteins/genetics , Oxidative Stress/genetics , SKP Cullin F-Box Protein Ligases/genetics , Transcription Factors/genetics , Animals , Caenorhabditis elegans/genetics , Mutation, Missense , Repressor Proteins
15.
PLoS Genet ; 12(10): e1006361, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27776126

ABSTRACT

SKN-1/Nrf are the primary antioxidant/detoxification response transcription factors in animals and they promote health and longevity in many contexts. SKN-1/Nrf are activated by a remarkably broad-range of natural and synthetic compounds and physiological conditions. Defining the signaling mechanisms that regulate SKN-1/Nrf activation provides insights into how cells coordinate responses to stress. Nrf2 in mammals is regulated in part by the redox sensor repressor protein named Keap1. In C. elegans, the p38 MAPK cascade in the intestine activates SKN-1 during oxidative stress by promoting its nuclear accumulation. Interestingly, we find variation in the kinetics of p38 MAPK activation and tissues with SKN-1 nuclear accumulation among different pro-oxidants that all trigger strong induction of SKN-1 target genes. Using genome-wide RNAi screening, we identify new genes that are required for activation of the core SKN-1 target gene gst-4 during exposure to the natural pro-oxidant juglone. Among 10 putative activators identified in this screen was skr-1/2, highly conserved homologs of yeast and mammalian Skp1, which function to assemble protein complexes. Silencing of skr-1/2 inhibits induction of SKN-1 dependent detoxification genes and reduces resistance to pro-oxidants without decreasing p38 MAPK activation. Global transcriptomics revealed strong correlation between genes that are regulated by SKR-1/2 and SKN-1 indicating a high degree of specificity. We also show that SKR-1/2 functions upstream of the WD40 repeat protein WDR-23, which binds to and inhibits SKN-1. Together, these results identify a novel p38 MAPK independent signaling mechanism that activates SKN-1 via SKR-1/2 and involves WDR-23.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Inactivation, Metabolic/genetics , Longevity/genetics , SKP Cullin F-Box Protein Ligases/genetics , Activin Receptors, Type I/genetics , Animals , Antioxidants/metabolism , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/antagonists & inhibitors , Caenorhabditis elegans Proteins/biosynthesis , Gastrointestinal Tract/metabolism , Gene Expression Regulation, Developmental , Humans , Kelch-Like ECH-Associated Protein 1/biosynthesis , Kelch-Like ECH-Associated Protein 1/genetics , Phosphorylation , RNA Interference , Reactive Oxygen Species/metabolism , S-Phase Kinase-Associated Proteins/genetics , SKP Cullin F-Box Protein Ligases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
16.
J Exp Biol ; 219(Pt 14): 2201-11, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27207646

ABSTRACT

It has long been recognized that simultaneous exposure to heat stress and oxidative stress shows a synergistic interaction that reduces organismal fitness, but relatively little is known about the mechanisms underlying this interaction. We investigated the role of molecular stress responses in driving this synergistic interaction using the nematode Caenorhabditis elegans To induce oxidative stress, we used the pro-oxidant compounds acrylamide, paraquat and juglone. As expected, we found that heat stress and oxidative stress interact synergistically to reduce survival. Compared with exposure to each stressor alone, during simultaneous sublethal exposure to heat stress and oxidative stress the normal induction of key oxidative-stress response (OxSR) genes was generally inhibited, whereas the induction of key heat-shock response (HSR) genes was not. Genetically activating the SKN-1-dependent OxSR increased a marker for protein aggregation and decreased whole-worm survival during heat stress alone, with the latter being independent of HSF-1. In contrast, compared with wild-type worms, inactivating the HSR by HSF-1 knockdown, which would be expected to decrease basal heat shock protein expression, increased survival during oxidative stress alone. Taken together, these data suggest that, in C. elegans, the HSR and OxSR cannot be simultaneously activated to the same extent that each can be activated during a single stressor exposure. We conclude that the observed synergistic reduction in survival during combined exposure to heat stress and oxidative stress is due, at least in part, to inhibition of the OxSR during activation of the HSR.


Subject(s)
Caenorhabditis elegans/physiology , Heat-Shock Response/physiology , Oxidative Stress , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Animals , Biomarkers/metabolism , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/metabolism , Environment , Gene Expression Regulation/drug effects , Genes, Reporter , Green Fluorescent Proteins/metabolism , Heat-Shock Response/drug effects , Heat-Shock Response/genetics , Oxidants/toxicity , Oxidative Stress/drug effects , Oxidative Stress/genetics , Protein Aggregates/drug effects , RNA Interference/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , Survival Analysis , Transcription Factors/metabolism
17.
G3 (Bethesda) ; 6(3): 551-8, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26715089

ABSTRACT

In Caenorhabditis elegans, the transcription factor SKN-1 has emerged as a central coordinator of stress responses and longevity, increasing the need for genetic tools to study its regulation and function. However, current loss-of-function alleles cause fully penetrant maternal effect embryonic lethality, and must be maintained with genetic balancers that require careful monitoring and labor intensive strategies to obtain large populations. In this study, we identified a strong, but viable skn-1 hypomorphic allele skn-1(zj15) from a genetic screen for suppressors of wdr-23, a direct regulator of the transcription factor. skn-1(zj15) is a point mutation in an intron that causes mis-splicing of a fraction of mRNA, and strongly reduces wildtype mRNA levels of the two long skn-1a/c variants. The skn-1(zj15) allele reduces detoxification gene expression and stress resistance to levels comparable to skn-1 RNAi, but, unlike RNAi, it is not restricted from some tissues. We also show that skn-1(zj15) is epistatic to canonical upstream regulators, demonstrating its utility for genetic analysis of skn-1 function and regulation in cases where large numbers of worms are needed, a balancer is problematic, diet is varied, or RNAi cannot be used.


Subject(s)
Alleles , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Animals , Animals, Genetically Modified , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Chromosome Mapping , DNA-Binding Proteins/metabolism , Epistasis, Genetic , Gene Expression Regulation , Introns , RNA Interference , Sequence Analysis, DNA , Transcription Factors/metabolism , Transcription, Genetic
18.
Mech Ageing Dev ; 149: 88-98, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26056713

ABSTRACT

The SKN-1/Nrf transcription factors are master regulators of oxidative stress responses and are emerging as important determinants of longevity. We previously identified a protein named WDR-23 as a direct repressor of SKN-1 in C. elegans. Loss of wdr-23 influences stress resistance, longevity, development, and reproduction, but it is unknown if WDR-23 influences development and reproduction solely through SKN-1 and the mechanisms by which SKN-1 promotes stress resistance and longevity are poorly defined. Here, we characterize phenotypes of wdr-23 and skn-1 manipulation and explore the role of glutathione. We provide evidence that diverse wdr-23 phenotypes are dependent on SKN-1, that beneficial and detrimental phenotypes of wdr-23 and skn-1 can be partially decoupled, and that SKN-1 activation delays degenerative tissue changes during aging. We also show that total glutathione levels are substantially elevated when the wdr-23/skn-1 pathway is activated and that skn-1 is required for preserving this cellular antioxidant during stress and aging. Alternatively, total glutathione was not elevated in worms with reduced insulin/IGF-1-like signaling or dietary restriction suggesting that SKN-1 ensures longevity via different mechanisms under these conditions. Lastly, genetic interaction data revise our understanding of which skn-1 variants are required for longevity during dietary restriction.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , DNA-Binding Proteins/metabolism , Glutathione/metabolism , Longevity , Repressor Proteins/metabolism , Transcription Factors/metabolism , Animals , Arsenites/chemistry , Body Size , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation , Mutation , Phenotype , Pigmentation , RNA Interference , Repressor Proteins/genetics , Signal Transduction , Time Factors , Transcription Factors/genetics
19.
ACS Chem Biol ; 10(8): 1871-9, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-25946346

ABSTRACT

Nematodes parasitize ∼1/3 of humans worldwide, and effective treatment via administration of anthelmintics is threatened by growing resistance to current therapies. The nematode transcription factor SKN-1 is essential for development of embryos and upregulates the expression of genes that result in modification, conjugation, and export of xenobiotics, which can promote resistance. Distinct differences in regulation and DNA binding relative to mammalian Nrf2 make SKN-1 a promising and selective target for the development of anthelmintics with a novel mode of action that targets stress resistance and drug detoxification. We report 17 (ML358), a first in class small molecule inhibitor of the SKN-1 pathway. Compound 17 resulted from a vanillamine-derived hit identified by high throughput screening that was advanced through analog synthesis and structure-activity studies. Compound 17 is a potent (IC50 = 0.24 µM, Emax = 100%) and selective inhibitor of the SKN-1 pathway and sensitizes the model nematode C. elegans to oxidants and anthelmintics. Compound 17 is inactive against Nrf2, the homologous mammalian detoxification pathway, and is not toxic to C. elegans (LC50 > 64 µM) and Fa2N-4 immortalized human hepatocytes (LC50 > 5.0 µM). In addition, 17 exhibits good solubility, permeability, and chemical and metabolic stability in human and mouse liver microsomes. Therefore, 17 is a valuable probe to study regulation and function of SKN-1 in vivo. By selective targeting of the SKN-1 pathway, 17 could potentially lead to drug candidates that may be used as adjuvants to increase the efficacy and useful life of current anthelmintics.


Subject(s)
Anthelmintics/chemistry , Anthelmintics/pharmacology , Caenorhabditis elegans Proteins/antagonists & inhibitors , Caenorhabditis elegans/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Transcription Factors/antagonists & inhibitors , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Helminthiasis/drug therapy , Helminthiasis/parasitology , Humans , Mice , Signal Transduction/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/drug effects
20.
Mol Cell Biol ; 34(16): 3156-67, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24912676

ABSTRACT

SKN-1/Nrf transcription factors activate cytoprotective genes in response to reactive small molecules and strongly influence stress resistance, longevity, and development. The molecular mechanisms of SKN-1/Nrf regulation are poorly defined. We previously identified the WD40 repeat protein WDR-23 as a repressor of Caenorhabditis elegans SKN-1 that functions with a ubiquitin ligase to presumably target the factor for degradation. However, SKN-1 activity and nuclear accumulation are not always correlated, suggesting that there could be additional regulatory mechanisms. Here, we integrate forward genetics and biochemistry to gain insights into how WDR-23 interacts with and regulates SKN-1. We provide evidence that WDR-23 preferentially regulates one of three SKN-1 variants through a direct interaction that is required for normal stress resistance and development. Homology modeling predicts that WDR-23 folds into a ß-propeller, and we identify the top of this structure and four motifs at the termini of SKN-1c as essential for the interaction. Two of these SKN-1 motifs are highly conserved in human Nrf1 and Nrf2 and two directly interact with target DNA. Lastly, we demonstrate that WDR-23 can block the ability of SKN-1c to interact with DNA sequences of target promoters identifying a new mechanism of regulation that is independent of the ubiquitin proteasome system, which can become occupied with damaged proteins during stress.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , DNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/antagonists & inhibitors , Caenorhabditis elegans Proteins/genetics , DNA, Protozoan/genetics , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Gene Expression Regulation/genetics , Larva/metabolism , Longevity/genetics , Protein Binding , Protein Folding , Repressor Proteins/genetics , Stress, Physiological/genetics , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...