Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 316: 255-260, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27614006

ABSTRACT

The etiology of Autism Spectrum Disorder (ASD) remains controversial. Deficits in social communication are one of the key criteria for ASD diagnosis. Valproic acid (VPA), which is an anti-epileptic and anti-depressive drug, is one of the teratogens to cause ASD onset. Moreover, synaptic dysfunction is suggested as one of the major causative factor in VPA-induced ASD in vitro and in vivo studies. Herein, this study aimed to determine the excitatory/inhibitory synaptic mRNA and protein expression in VPA-induced autistic mice. Pregnant BALB/c mice were injected peritoneally with a single dose of 600mg/kg VPA on embryonic day (E) 12.5. Social impairment was verified by three chamber sociability tests on postnatal days (PND) 28, 35, 42 and 49. Cortical synaptic mRNA and protein expressions were examined on PND 50. The excitatory synaptic proteins NR2A, NR2B, NR2C were significantly down-regulated by 80.0% (p<0.01), 51.5% (p<0.05) and 81.5% (p<0.05) respectively. Furthermore, the NMDAR expression regulatory protein BDNF was also found to be significantly downregulated by 76.8% (p<0.05). GAD65, GAD67, GABRA1, GABRA5, GABRB2 from the GABAergic inhibitory synaptic pathway were significantly downregulated by 21.3% (p<0.05), 77.0% (p<0.05), 53.9% (p<0.05), 56.9% (p<0.05) and 55.2% (p<0.01) respectively in the cortex of VPA-induced mice. Taken together, our results suggested that synaptic dysfunction might be involved in the social impairments in VPA-induced ASD.


Subject(s)
Cerebral Cortex/metabolism , Down-Regulation/drug effects , GABA Agents/toxicity , Prenatal Exposure Delayed Effects/physiopathology , Receptors, Glutamate/metabolism , Social Communication Disorder/etiology , Valproic Acid/toxicity , Animals , Animals, Newborn , Brain-Derived Neurotrophic Factor/metabolism , Cerebral Cortex/drug effects , Electron Transport Complex IV/metabolism , Female , Linear Models , Locomotion/drug effects , Male , Mice , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rabbits , Receptors, GABA/metabolism , Receptors, Glutamate/genetics , Time Factors
2.
Chin Med ; 11: 27, 2016.
Article in English | MEDLINE | ID: mdl-27252774

ABSTRACT

BACKGROUND: Gastrodia and Uncaria decoction (tianma gouteng yin) is commonly used in Chinese medicine to treat cerebral ischemia. The aim of this study was to investigate the neuroprotective effects of a water extract (GUW) of Gastrodia elata (tianma; GE) and Uncaria rhynchophylla (gouteng; UR) against ischemic insult using oxygen-glucose-deprived neuronal differentiated PC12 cells and rats subjected to middle cerebral artery occlusion (MCAO). METHODS: GUW was prepared by boiling raw GE and UR in water, followed by the lyophilization of the resulting extract. Neuronal differentiated PC12 cells were subjected to oxygen-glucose deprivation with or without GUW. The neuroprotective effects of GUW were compared with those of the corresponding GE and UR extracts to tease apart the effects of the different herbs. The synergistic effect of GE and UR in GUW was measured using a modified version of Burgi's formulae. The neuroprotective mechanisms via Nrf2 and anti-apoptotic pathways were investigated using real time PCR and enzyme activity assays. The neuroprotective effects of GUW were studied in vivo using a rat MCAO model. Neurofunctional outcome and brain infarct volume we assessed. H&E staining, cresyl violet staining and immunohistochemistry were performed to assess the histological outcome. RESULTS: The results of lactate dehydrogenase assay showed that GUW protected cells in a concentration-dependent manner (P < 0.001). Moreover, the neuroprotective effects of GUW were greater than those of GE + UR (P = 0.018). Burgi's formula showed that the herbs in GUW acted synergistically to protect cells from ischemic injury. GUW significantly upregulated Bcl-2 expression (P = 0.0130) and reduced caspase-3 activity by 60 % (P < 0.001). GUW upregulated Nrf-2 expression (P = 0.0066) and the antioxidant response element pathway genes. The infarct volume was reduced by 55 % at day 7 of reperfusion (P < 0.001), and significant improvements were observed in the neurological deficit score and beam-walking test at 7 days (P < 0.001). H&E and cresyl violet staining revealed higher tissue integrity in the GUW treatment group compared with MCAO rats. CONCLUSION: GUW modulated the antioxidant system and antiapoptotic genes in oxygen-glucose deprived neuronal differentiated PC12 cells and MCAO sprague-dawley rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...