Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 11: 1121, 2020.
Article in English | MEDLINE | ID: mdl-32582201

ABSTRACT

Helicobacter pylori is a gram-negative, microaerophilic, and spiral-shaped bacterium and causes gastrointestinal diseases in human. IL-1ß is a representative cytokine produced in innate immune cells and is considered to be a key factor in the development of gastrointestinal malignancies. However, the mechanism of IL-1ß production by neutrophils during H. pylori infection is still unknown. We designed this study to identify host and bacterial factors involved in regulation of H. pylori-induced IL-1ß production in neutrophils. We found that H. pylori-induced IL-1ß production is abolished in NLRP3-, ASC-, and caspase-1/11-deficient neutrophils, suggesting essential role for NLRP3 inflammasome in IL-1ß response against H. pylori. Host TLR2, but not TLR4 and Nod2, was also required for transcription of NLRP3 and IL-1ß as well as secretion of IL-1ß. H. pylori lacking cagL, a key component of the type IV secretion system (T4SS), induced less IL-1ß production in neutrophils than did its isogenic WT strain, whereas vacA and ureA were dispensable. Moreover, T4SS was involved in caspase-1 activation and IL-1ß maturation in H. pylori-infected neutrophils. We also found that FlaA is essential for H. pylori-mediated IL-1ß production in neutrophils, but not dendritic cells. TLR5 and NLRC4 were not required for H. pylori-induced IL-1ß production in neutrophils. Instead, bacterial motility is essential for the production of IL-1ß in response to H. pylori. In conclusion, our study shows that host TLR2 and NLRP3 inflammasome and bacterial T4SS and motility are essential factors for IL-1ß production by neutrophils in response to H. pylori.


Subject(s)
Helicobacter Infections/immunology , Inflammasomes/immunology , Interleukin-1beta/immunology , Neutrophils/immunology , Type IV Secretion Systems/immunology , Animals , Helicobacter pylori/immunology , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...