Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38717925

ABSTRACT

A Gram-stain-negative, facultative aerobic, catalase- and oxidase-positive, non-motile, non-flagellated, and coccus-shaped bacterium, strain J2-16T, isolated from a marine green alga, was characterized taxonomically. Strain J2-16T grew at 20-40 °C (optimum, 30 °C), pH 6.0-10.0 (optimum, pH 7.0), and 1.0-4.0 % (w/v) NaCl (optimum, 3.0 %). Menaquinone-7 was identified as the sole respiratory quinone, and major fatty acids (>5 %) were C18 : 1 ω9c, iso-C14 : 0, C14 : 0, anteiso-C15 : 0, C18 : 0, C16 : 0, and C17 : 1 ω8c. The polar lipids of strain J2-16T consisted of phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids, and three unidentified lipids. The genome size of strain J2-16T was 5384 kb with a G+C content of 52.0 mol%. Phylogenetic analyses based on 16S rRNA gene and 120 protein marker sequences revealed that strain J2-16T formed a distinct phyletic lineage within the genus Coraliomargarita, closely related to Coraliomargarita sinensis WN38T and Coraliomargarita akajimensis DSM 45221T with 16S rRNA gene sequence similarities of 95.7 and 94.4 %, respectively. Average nucleotide identity and digital DNA-DNA hybridization values between strain J2-16T and Coraliomargarita species were lower than 71.2 and 20.0 %, respectively. The phenotypic, chemotaxonomic, and molecular features support that strain J2-16T represents a novel species of the genus Coraliomargarita, for which the name Coraliomargarita algicola sp. nov. is proposed. The type strain is J2-16T (=KACC 22590T=JCM 35407T).


Subject(s)
Bacterial Typing Techniques , Base Composition , Chlorophyta , DNA, Bacterial , Fatty Acids , Phospholipids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , DNA, Bacterial/genetics , Nucleic Acid Hybridization , Seawater/microbiology
2.
Article in English | MEDLINE | ID: mdl-38189362

ABSTRACT

Two Gram-stain-negative, obligately aerobic, motile rod bacteria, designated as G2-5T and G20-9T, exhibiting catalase- and oxidase-positive activities, were isolated from the phycosphere of a Chondrus species, a marine red alga. Strain G2-5T exhibited optimal growth at 30 °C and pH 5.0-6.0 and in the presence of 0.5-1.0% NaCl. In contrast, strain G20-9T demonstrated optimal growth at 25 °C and pH 6.0 and in the presence of 0.5-1.5% NaCl. Both strains contained ubiquinone-10, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C18 : 0 and 11-methyl-C18 : 1 ω7c, and diphosphatidylglycerol and phosphatidylglycerol as the major respiratory isoprenoid quinone, cellular fatty acids and polar lipids, respectively. The genomic DNA G+C contents were 57.2 mol% for strain G2-5T and 57.5 mol% for strain G20-9T. Strains G2-5T and G20-9T exhibited 98.2 % 16S rRNA gene sequence similarity, along with 82.3 % average nucleotide identity (ANI) and 25.0 % digital DNA-DNA hybridization (dDDH) values, indicating that they represent different species. Phylogenetic analyses based on both 16S rRNA gene and genome sequences revealed that strains G2-5T and G20-9T formed distinct phylogenic lineages within the genus Devosia. Strains G2-5T and G20-9T were most closely related to Devosia limi DSM 17137T and Devosia beringensis S02T with 97.7 and 96.9 % 16S rRNA gene sequence similarities, respectively. The ANI and dDDH values between strains G2-5T and G20-9T and other Devosia species were lower than 73.9 and 19.2 %, respectively, suggesting that they constitute novel species within the genus Devosia. Based on their distinct phenotypic, chemotaxonomic, and molecular characteristics, strains G2-5T and G20-9T represent two novel species of the genus Devosia, for which the names Devosia rhodophyticola sp. nov. (G2-5T=KACC 22601T=JCM 35404T) and Devosia algicola sp. nov. (G20-9T=KACC 22650T=JCM 35405T) are proposed, respectively.


Subject(s)
Gammaproteobacteria , Rhodophyta , Base Composition , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sodium Chloride , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Nucleotides
3.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Article in English | MEDLINE | ID: mdl-37830909

ABSTRACT

Two Gram-stain-negative, catalase- and oxidase-positive, aerobic non-motile and motile rod bacteria, strains MSW6T and RSW2T, were isolated from surface seawater. Strain MSW6T optimally grew at 20 °C, pH 7.0 and 3 % NaCl, while strain RSW2T optimally grew at 25 °C, pH 7.0-8.0 and 2 % NaCl. Strain MSW6T possessed menaquinone-6 as the major respiratory quinone, and its major fatty acids were iso-C15 : 1 G, iso-C15 : 0 and iso-C15 : 0 3-OH. The major polar lipid identified in strain MSW6T was phosphatidylethanolamine (PE). On the other hand, strain RSW2T had ubiquinone-8 as the predominant respiratory quinone, and its major fatty acids consisted of summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C16 : 0. The major polar lipids identified in strain RSW2T were PE and phosphatidylglycerol. As the sole respiratory quinone, strain MSW6T possessed menaquinone-6, while strain RSW2T had ubiquinone-8. The DNA G+C contents of strains MSW6T and RSW2T were 31.9 and 43.4 mol%, respectively. Phylogenetic analyses based on 16S rRNA and core gene sequences showed that strain MSW6T formed a phylogenic lineage with Psychroserpens mesophilus KOPRI 13649T, while strain RSW2T formed a phylogenic lineage with Marinomonas primoryensis KMM 3633T. Strain MSW6T shared 97.9 % 16S rRNA gene sequence similarity and 80.7 % average nucleotide identity (ANI) ith P. mesophilus KOPRI 13649T, and strain RSW2T shared 99.1 % 16S rRNA gene sequence similarity and 93.1 % ANI with M. primoryensis KMM 3633T. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strains MSW6T and RSW2T represent novel species of the genera Psychroserpens and Marinomonas, respectively, for which the names Psychroserpens ponticola sp. nov. and Marinomonas maritima sp. nov. are proposed, respectively. The type strain of P. ponticola is MSW6T (=KACC 22338T=JCM 35022T) and the type strain of M. maritima is RSW2T (=KACC 22716T=JCM 35550T).


Subject(s)
Fatty Acids , Marinomonas , Fatty Acids/chemistry , Ubiquinone/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Vitamin K 2/chemistry , Sodium Chloride , DNA, Bacterial/genetics , Nucleic Acid Hybridization , Base Composition , Bacterial Typing Techniques , Sequence Analysis, DNA , Seawater/microbiology , Phospholipids/chemistry
4.
J Pineal Res ; 53(3): 225-37, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22507555

ABSTRACT

Melatonin has potent antioxidant, analgesic, and antinociceptive properties. However, the effects of melatonin against oxidative stress-induced cytotoxicity and inflammatory mediators in human chondrocytes remain poorly understood. This study examined the effects and underlying mechanism of melatonin in hydrogen peroxide (H(2) O(2) )-stimulated human chondrocytes and rabbit osteoarthritis (OA) model. Melatonin markedly inhibited hydrogen peroxide (H(2) O(2) )-stimulated cytotoxicity, iNOS, and COX-2 protein and mRNA expression, as well as the downstream products, NO and PGE(2) . Incubation of cells with melatonin decreased H(2) O(2) -induced Sirtuin 1 (SIRT1) mRNA and protein expression. SIRT1 inhibition by sirtinol or Sirt1 siRNA reversed the effects of melatonin on H(2) O(2) -mediated induction of pro-inflammatory cytokines (NO, PGE(2) , TNF-α, IL-1ß, and IL-8) and the expression of iNOS, COX-2, and cartilage destruction molecules. Melatonin blocked H(2) O(2) -induced phosphorylation of PI3K/Akt, p38, ERK, JNK, and MAPK, as well as activation of NF-κB, which was reversed by sirtinol and SIRT1 siRNA. In rabbit with OA, intra-articular injection of melatonin significantly reduced cartilage degradation, which was reversed by sirtinol. Taken together, this study shows that melatonin exerts cytoprotective and anti-inflammatory effects in an oxidative stress-stimulated chondrocyte model and rabbit OA model, and that the SIRT1 pathway is strongly involved in this effect.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Cytoprotection/drug effects , Hydrogen Peroxide/pharmacology , Melatonin/therapeutic use , Sirtuin 1/physiology , Animals , Benzamides/pharmacology , Cell Line , Cell Survival/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/drug effects , Cytokines/metabolism , Female , Humans , NF-kappa B/antagonists & inhibitors , Naphthols/pharmacology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Osteoarthritis/drug therapy , Rabbits
5.
Toxicol In Vitro ; 25(8): 1782-8, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21963806

ABSTRACT

Sappanchalcone, a flavonoid extracted from Caesalpinia sappan, exhibits cytoprotective activity, but the molecular basis for the anticancer effect of sappanchalcone has not been reported. In this study, we examined whether sappanchalcone could inhibit the growth of human primary and metastatic oral cancer cells, and we analyzed the signaling pathway underlying the apoptotic effects of the compound in this process using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT) assays, fluorescence microscopy, flow cytometry, and Western blotting. Sappanchalcone-treated oral cancer cells showed an increased cytosolic level of cytochrome c, downregulated Bcl-2 expression, upregulated Bax and p53 expression, caspase-3 and -9 activation, and poly (ADP-ribose) polymerase cleavage. Furthermore, sappanchalcone induced activation of p38, extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and Nuclear factor k B (NF-κB), as demonstrated by the phosphorylation of each mitogen-activated protein kinases (MAPKs), the degradation of inhibitor of NF-κα (IκB-α), increased expression of nuclear p65, and NF-κB-DNA binding. Inhibition of the expression of p38, ERK, JNK, and NF-κB by pharmacological inhibitors reversed sappanchalcone-induced growth inhibition and apoptosis. These results provide the first evidence that sappanchalcone suppresses oral cancer cell growth and induces apoptosis through the activation of p53-dependent mitochondrial, p38, ERK, JNK, and NF-κB signaling. Thus, it has potential as a chemotherapeutic agent for oral cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Chalcones/pharmacology , Mouth Neoplasms/drug therapy , Cell Line, Tumor , Humans , I-kappa B Proteins/metabolism , Mitogen-Activated Protein Kinases/metabolism , Mouth Neoplasms/metabolism , NF-KappaB Inhibitor alpha , NF-kappa B/metabolism , STAT3 Transcription Factor/metabolism , Transcription Factor RelA/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...