Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2776, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555311

ABSTRACT

Potential synergism between Bruton's tyrosine kinase (BTK) inhibitor and lenalidomide in treating aggressive B-cell lymphoma has been suggested. Here, the authors report a single-arm phase II clinical trial of combination of acalabrutinib, lenalidomide and rituximab (R2A) in patients with aggressive relapsed/refractory aggressive (R/R) B-cell non-Hodgkin lymphoma (NHL). The primary endpoint of this study is objective response rate (ORR), and the secondary endpoints are complete remission (CR) rate, duration of response (DoR), progression-free survival (PFS) and overall survival (OS). A total of 66 patients are enrolled mostly with diffuse large B-cell lymphoma. The ORR is 54.5% and CR rate is 31.8% meeting the primary end point. The median DoR is 12.9 months, and 1-year PFS and OS rate is 33.1% and 67.5% respectively. Adverse events (AE) are manageable with the most frequent AE being neutropenia (31.8%). Patients with MYD88 mutations, subtypes known for NF-κB activation, and high BTK expression by immunohistochemistry respond well. Overall, these results show a significant efficacy of the R2A regimen in patients with aggressive R/R B-cell NHL, with exploratory biomarkers suggesting potential associations with response. (ClinicalTrials.gov 51 identifier: NCT04094142).


Subject(s)
Benzamides , Lymphoma, Large B-Cell, Diffuse , Pyrazines , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Disease-Free Survival , Lenalidomide/therapeutic use , Lymphoma, Large B-Cell, Diffuse/drug therapy , Rituximab/therapeutic use , Treatment Outcome
2.
Elife ; 92020 04 08.
Article in English | MEDLINE | ID: mdl-32267234

ABSTRACT

Human epidermal growth factor receptors (HERs) are the primary targets of many directed cancer therapies. However, the reason a specific dimer of HERs generates a stronger proliferative signal than other permutations remains unclear. Here, we used single-molecule immunoprecipitation to develop a biochemical assay for endogenously-formed, entire HER2-HER3 heterodimers. We observed unexpected, large conformational fluctuations in juxta-membrane and kinase domains of the HER2-HER3 heterodimer. Nevertheless, the individual HER2-HER3 heterodimers catalyze tyrosine phosphorylation at an unusually high rate, while simultaneously interacting with multiple copies of downstream signaling effectors. Our results suggest that the high catalytic rate and multi-tasking capability make a concerted contribution to the strong signaling potency of the HER2-HER3 heterodimers.


Subject(s)
Receptor, ErbB-2/chemistry , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/chemistry , Receptor, ErbB-3/metabolism , Signal Transduction , Dimerization , HEK293 Cells , Humans , Models, Molecular , Phosphorylation , Protein Conformation , Protein Domains , Receptor, ErbB-2/genetics , Receptor, ErbB-3/genetics , Single Molecule Imaging , Tyrosine/metabolism
3.
Nat Biomed Eng ; 2(4): 239-253, 2018 04.
Article in English | MEDLINE | ID: mdl-30936439

ABSTRACT

The accumulation of genetic and epigenetic alterations in cancer cells rewires cellular signalling pathways through changes in the patterns of protein-protein interactions (PPIs). Understanding these patterns may facilitate the design of tailored cancer therapies. Here, we show that single-molecule pull-down and co-immunoprecipitation techniques can be used to characterize signalling complexes of the human epidermal growth-factor receptor (HER) family in specific cancers. By analysing cancer-specific signalling phenotypes, including post-translational modifications and PPIs with downstream interactions, we found that activating mutations of the epidermal growth-factor receptor (EGFR) gene led to the formation of large protein complexes surrounding mutant EGFR proteins and to a reduction in the dependency of mutant EGFR signalling on phosphotyrosine residues, and that the strength of HER-family PPIs is correlated with the strength of the dependence of breast and lung adenocarcinoma cells on HER-family signalling pathways. Furthermore, using co-immunoprecipitation profiling to screen for EGFR-dependent cancers, we identified non-small-cell lung cancers that respond to an EGFR-targeted inhibitor. Our approach might help predict responses to targeted cancer therapies, particularly for cancers that lack actionable genomic mutations.


Subject(s)
ErbB Receptors/metabolism , Molecular Diagnostic Techniques/methods , Neoplasms/diagnosis , Protein Interaction Maps/physiology , Signal Transduction/physiology , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, SCID , Middle Aged , Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...