Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 50(23): 4688-700, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21833148

ABSTRACT

In the manufacturing process for the lens system of a mobile phone camera, various types of assembly and manufacturing tolerances, such as tilt and decenter, should be appropriately allocated. Because these tolerances affect manufacturing cost and the expected optical performance, it is necessary to choose a systematic design methodology for determining optimal tolerances. In order to determine the tolerances that minimize production cost while satisfying the reliability constraints on important optical performance indices, we propose a tolerance design procedure for a lens system. A tolerance analysis is carried out using Latin hypercube sampling for evaluating the expected optical performance. The tolerance optimization is carried out using a function-based sequential approximate optimization technique that can reduce the computational burden and smooth numerical noise occurring in the optimization process. Using the proposed design approach, the optimal production cost was decreased by 28.3% compared to the initial cost while satisfying all the constraints on the expected optical performance. We believe that the tolerance analysis and design procedure presented in this study can be applied to the tolerance optimization of other systems.

2.
Cell Biochem Biophys ; 61(1): 199-207, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21468691

ABSTRACT

Although protein kinase Cδ (PKCδ) has been suggested in the negative control of the cell cycle machinery in many types of cancer cells, its underlying mechanisms are partly understood. Here we report that the expression of apoptosis signal-regulating kinase1 (ASK1) is inducible in a PKCδ-dependent manner, and contributes to phorbol ester-induced cell cycle arrest through persistent JNK activation in breast cancer epithelial cells. Activation of PKC with phorbol 12-myristate 13-acetate (PMA) gradually up-regulated the expression of ASK1 mRNA and protein, and subsequently enhanced its catalytic activity in MCF-7 cells. Importantly, such PMA-induced ASK1 expression was completely abolished by pretreatment of rottlerin, a specific PKCδ inhibitor or by knocking down the expression of PKCδ, while ectopic expression of a constitutively active form of PKCδ strongly up-regulated ASK1 expression. We also found that the persistent activation of mitogen-activated protein kinase, JNK in response to PMA was greatly attenuated by RNA interference-mediated knockdown of ASK1. Taken together, these results suggest that inducible expression of ASK1 by PKCδ contributes to the G1 arrest by enhancing persistent JNK signaling activation which represents a novel alternative mechanism of PKCδ-dependent cell cycle arrest and limiting proliferation of breast cancer epithelial cells.


Subject(s)
JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Kinase Kinase 5/metabolism , Protein Kinase C-delta/metabolism , Acetophenones/pharmacology , Benzopyrans/pharmacology , Cell Line, Tumor , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , G1 Phase Cell Cycle Checkpoints/physiology , Humans , MAP Kinase Kinase Kinase 5/antagonists & inhibitors , MAP Kinase Kinase Kinase 5/genetics , Phorbol Esters/metabolism , Protein Kinase C-delta/antagonists & inhibitors , Protein Kinase C-delta/genetics , RNA Interference , RNA, Small Interfering/metabolism , Up-Regulation/drug effects
3.
J Hepatol ; 51(1): 67-76, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19447520

ABSTRACT

BACKGROUND/AIMS: Based on the observation of biphasic induction of SGK1 expression in the regenerating liver, we investigated the role of SGK1 in the regulation of MEK/ERK signaling pathway which plays a crucial role in regulating growth and survival signaling. METHODS: To determine the role of SGK1 in the activation of MEK/ERK signaling cascade, we infected primary hepatocytes with recombinant adenoviral vector encoding SGK1, and assessed its effect on the MEK/ERK signaling pathway. RESULTS: Partial hepatectomy resulted in the biphasic transcriptional induction of SGK1 in regenerating liver tissues. Infection of primary hepatocytes with an adenoviral vector encoding SGK1 enhanced the ERK phosphorylation under serum-starved conditions and this was blocked by the expression of kinase-dead SGK1. SGK1 was found to physically interact with ERK1/2 as well as MEK1/2. Furthermore, SGK1 mediated the phosphorylation of ERK2 on Ser(29) in a serum-dependent manner. Replacement of Ser(29) to aspartic acid, which mimics the phosphorylation of Ser(29), enhanced the ERK2 activity as well as the MEK/ERK complexes formation. CONCLUSIONS: SGK1 expression during liver regeneration is a part of a signaling pathway that is necessary for enhancing ERK signaling activation through modulating the MEK/ERK complex formation.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/physiology , Immediate-Early Proteins/physiology , Liver Regeneration/physiology , Mitogen-Activated Protein Kinase Kinases/physiology , Protein Serine-Threonine Kinases/physiology , Animals , Cells, Cultured , Humans , MAP Kinase Kinase 1/physiology , MAP Kinase Kinase 2/physiology , MAP Kinase Signaling System , NF-kappa B/metabolism , Phosphorylation , Rats , Rats, Sprague-Dawley
4.
Exp Mol Med ; 40(2): 186-95, 2008 Apr 30.
Article in English | MEDLINE | ID: mdl-18446057

ABSTRACT

Previous studies have demonstrated that rottlerin, a specific PKCdelta inhibitor, potentiates death receptor- mediated apoptosis through a cytochrome c-dependent or -independent pathway. However, its ability to regulate necrotic cell death, as well as the underlying mechanism, remains unknown. We found that in murine fibrosarcoma L929 cells, treatment with rottlerin protected the cells against TNF-induced necrosis, whereas it sensitized the cells to apoptosis induced by co-treatment with Hsp90 inhibitor geldanamycin and TNF, in a manner independent of its ability to inhibit PKC-delta. TNF treatment induced rapid accumulation of mitochondrial superoxide (O2-) through the Nox1 NADPH oxidase when cells undergo necrosis. Moreover, pretreatment with rottlerin failed to induce the GTP-bound form of small GTPase Rac1 by TNF treatment, and subsequently suppressed mitochondrial O2- production and poly(ADP-ribose) polymerase activation, thus inhibiting necrotic cell death. Therefore, our study suggests that Nox1 NADPH oxidase is a new molecular target for anti-necrotic activity of rottlerin upon death-receptor ligation.


Subject(s)
Acetophenones/pharmacology , Benzopyrans/pharmacology , Cell Death/drug effects , Protein Kinase Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Cell Line, Tumor , Mice , Superoxides/metabolism , Tumor Necrosis Factor-alpha/pharmacology
5.
BMC Cancer ; 8: 144, 2008 May 23.
Article in English | MEDLINE | ID: mdl-18498667

ABSTRACT

BACKGROUND: RET/PTC (rearranged in transformation/papillary thyroid carcinomas) gene rearrangements are the most frequent genetic alterations identified in papillary thyroid carcinoma. Although it has been established that RET/PTC kinase plays a crucial role in intracellular signaling pathways that regulate cellular transformation, growth, and proliferation in thyroid epithelial cells, the upstream signaling that leads to the activation of RET/PTC is largely unknown. Based on the observation of high levels of PLD expression in human papillary thyroid cancer tissues, we investigated whether PLD plays a role in the regulating the RET/PTC-induced STAT3 activation. METHODS: Cancer tissue samples were obtained from papillary thyroid cancer patients (n = 6). The expression level of PLD was examined using immunohistochemistry and western blotting. Direct interaction between RET/PTC and PLD was analyzed by co-immunoprecipitation assay. PLD activity was assessed by measuring the formation of [3H]phosphatidylbutanol, the product of PLD-mediated transphosphatidylation, in the presence of n-butanol. The transcriptional activity of STAT3 was assessed by m67 luciferase reporter assay. RESULTS: In human papillary thyroid cancer, the expression levels of PLD2 protein were higher than those in the corresponding paired normal tissues. PLD and RET/PTC could be co-immunoprecipitated from cells where each protein was over-expressed. In addition, the activation of PLD by pervanadate triggered phosphorylation of tyrosine 705 residue on STAT-3, and its phosphorylation was dramatically higher in TPC-1 cells (from papillary carcinoma) that have an endogenous RET/PTC1 than in ARO cells (from anaplastic carcinoma) without alteration of total STAT-3 expression. Moreover, the RET/PTC-mediated transcriptional activation of STAT-3 was synergistically increased by over-expression of PLD, whereas the PLD activity as a lipid hydrolyzing enzyme was not affected by RET/PTC. CONCLUSION: These findings led us to suggest that the PLD synergistically functions to activate the STAT3 signaling by interacting directly with the thyroid oncogenic kinase RET/PTC.


Subject(s)
Carcinoma, Papillary/enzymology , Phospholipase D/genetics , Phospholipase D/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Thyroid Neoplasms/enzymology , Adult , Aged , Aged, 80 and over , Carcinoma, Papillary/pathology , Cell Culture Techniques , Cell Line, Tumor , Enzyme Activation , Female , Humans , Male , Middle Aged , Phosphorylation , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/metabolism , Signal Transduction , Thyroid Neoplasms/pathology , Transcriptional Activation
6.
Korean J Physiol Pharmacol ; 12(4): 185-91, 2008 Aug.
Article in English | MEDLINE | ID: mdl-19967054

ABSTRACT

Activation of c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, is an important cellular response that modulates the outcome of the cells which are exposed to the tumor necrosis factor (TNF) or the genotoxic stress including DNA damaging agents. Although it is known that JNK is activated in response to genotoxic stress, neither the pathways to transduce signals to activate JNK nor the primary sensors of the cells that trigger the stress response have been identified. Here, we report that the receptor interacting protein (RIP), a key adaptor protein of TNF signaling, was required to activate JNK in the cells treated with certain DNA damaging agents such as adriamycin (Adr) and 1-beta-D-arabinofuranosylcytosine (Ara-C) that cause slow and sustained activation, but it was not required when treated with N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and short wavelength UV, which causes quick and transient activation. Our findings revealed that this sustained JNK activation was not mediated by the TNF (tumor necrosis factor) receptor signaling, but it required a functional ATM (ataxia telangiectasia) activity. In addition, JNK inhibitor SP-600125 significantly blocked the Adr-induced cell death, but it did not affect the cell death induced by MNNG. These findings suggest that the sustained activation of JNK mediated by RIP plays an important role in the DNA damage-induced cell death, and that the duration of JNK activation relays a different stress response to determine the cell fate.

7.
Toxicol Res ; 24(3): 175-182, 2008 Sep.
Article in English | MEDLINE | ID: mdl-32038792

ABSTRACT

DNA-dependent protein kinase (DNA-PK) is involved in joining DNA double-strand breaks induced by ionizing radiation or V(D)J recombination and is activated by DNA ends and composed of a DNA binding subunit, Ku, and a catalytic subunit, DNA-PKcs. It has been suggested that DNA-PK might be 2nd upstream kinase for protein kinase B (PKB). In this report, we showed that Ser473 phosphorylation in the hydrophobic-motif of PKB is blocked in DNA-PK knockout mouse embryonic fibroblast cells (MEFs) following insulin stimulation, while there is no effect on Ser473 phosphorylation in DNA-PK wild type MEF cells. The observation is further confirmed in human glioblastoma cells expressing a mutant form of DNA-PK (M059J) and a wild-type of DNA-PK (M059K), indicating that DNA-PK is indeed important for PKB activation. Furthermore, the treatment of cells with doxorubicin, DNA-damage inducing agent, leads to PKB phosphorylation on Ser473 in control MEF cells while there is no response in DNA-PK knockout MEF cells. Together, these results proposed that DNA-PK has a potential role in insulin signaling as well as DNA-repair signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...