Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
2.
J Dermatol Sci ; 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29752146

ABSTRACT

BACKGROUND: Although it is established that epidermal barrier disturbance and immune dysfunction resulting in IgE sensitization are critical factors in the development of cutaneous inflammation, the pathogenesis and targeted therapy of atopic dermatitis (AD)-specific pathways have still been unknown. OBJECTIVE: Taking into account the fact that Th2 cytokines in AD have both unique and overlapping functions including increased epidermal thickening, inflammation, and decreased expressing of the barrier proteins keratinocyte differentiation, we sought to clarify our hypothesis that TRPV1 antagonist plays a critical role in skin barrier function and can be a therapeutic target for AD. METHODS: AD-like dermatitis was induced in hairless mice by repeated oxazolone (Ox) challenges to hairless mice. The functional studies concerning skin barrier function, anti-inflammatory action, and molecular mechanism by TRPV1 antagonism were conducted by histopathological assays, ELISA, qPCR, western blotting, and skin blood flow measurement. RESULTS: Topically administered TRPV1 antagonist, PAC-14028 (Asivatrep: C21H22F5N3O3S), improved AD-like dermatitis and skin barrier functions, and restored the expression of epidermal differentiation markers. In addition, the PAC-14028 cream significantly inhibited cutaneous inflammation by decreasing the expression of serum IgE, and the epidermal expression of IL-4, and IL-13 in Ox-AD mice. These results may provide a novel insight into the molecular mechanism of PAC-14028 cream involved in anti-inflammatory effects and skin barrier functions by suppressing the multiple signaling pathways including IL-4/-13-mediated activation of JAK/STAT, TRPV1, and neuropeptides. CONCLUSION: PAC-14028 cream can be a potential therapeutic tool for the treatment of chronic inflammation and disrupted barrier function in patients with AD.

3.
Exp Neurobiol ; 26(5): 252-265, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29093634

ABSTRACT

The valproic acid (VPA)-induced animal model is one of the most widely utilized environmental risk factor models of autism. Autism spectrum disorder (ASD) remains an insurmountable challenge among neurodevelopmental disorders due to its heterogeneity, unresolved pathological pathways and lack of treatment. We previously reported that VPA-exposed rats and cultured rat primary neurons have increased Pax6 expression during post-midterm embryonic development which led to the sequential upregulation of glutamatergic neuronal markers. In this study, we provide experimental evidence that telomerase reverse transcriptase (TERT), a protein component of ribonucleoproteins complex of telomerase, is involved in the abnormal components caused by VPA in addition to Pax6 and its downstream signals. In embryonic rat brains and cultured rat primary neural progenitor cells (NPCs), VPA induced the increased expression of TERT as revealed by Western blot, RT-PCR, and immunostainings. The HDAC inhibitor property of VPA is responsible for the TERT upregulation. Chromatin immunoprecipitation revealed that VPA increased the histone acetylation but blocked the HDAC1 binding to both Pax6 and Tert genes. Interestingly, the VPA-induced TERT overexpression resulted to sequential upregulations of glutamatergic markers such as Ngn2 and NeuroD1, and inter-synaptic markers such as PSD-95, α-CaMKII, vGluT1 and synaptophysin. Transfection of Tert siRNA reversed the effects of VPA in cultured NPCs confirming the direct involvement of TERT in the expression of those markers. This study suggests the involvement of TERT in the VPA-induced autistic phenotypes and has important implications for the role of TERT as a modulator of balanced neuronal development and transmission in the brain.

4.
Biomol Ther (Seoul) ; 25(4): 374-382, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28208013

ABSTRACT

Autism spectrum disorder (ASD) remains unexplained and untreated despite the high attention of research in recent years. Aside from its various characteristics is the baffling male preponderance over the female population. Using a validated animal model of ASD which is the telomerase reverse transcriptase overexpressing mice (TERT-tg), we conducted ASD-related behavioral assessments and protein expression experiments to mark the difference between male and females of this animal model. After statistically analyzing the results, we found significant effects of TERT overexpression in sociability, social novelty preference, anxiety, nest building, and electroseizure threshold in the males but not their female littermates. Along these differences are the male-specific increased expressions of postsynaptic proteins which are the NMDA and AMPA receptors in the prefrontal cortex. The vGluT1 presynaptic proteins, but not GAD, were upregulated in both sexes of TERT-tg mice, although it is more significantly pronounced in the male group. Here, we confirmed that the behavioral effect of TERT overexpression in mice was male-specific, suggesting that the aberration of this gene and its downstream pathways preferentially affect the functional development of the male brain, consistent with the male preponderance in ASD.

6.
Sci Rep ; 6: 36250, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27819277

ABSTRACT

Autism spectrum disorder (ASD) is a heterogeneously pervasive developmental disorder in which various genetic and environmental factors are believed to underlie its development. Recently, epigenetics has been suggested as a novel concept for ASD aetiology with a proposition that epigenetic marks can be transgenerationally inherited. Based on this assumption of epigenetics, we investigated the transgenerational inheritance of ASD-like behaviours and their related synaptic changes in the VPA animal model of ASD. The first generation (F1) VPA-exposed offspring exhibited autistic-like impaired sociability and increased marble burying. They also showed increased seizure susceptibility, hyperactivity and decreased anxiety. We mated the VPA-exposed F1 male offspring with naïve females to produce the second generation (F2), and then similarly mated the F2 to deliver the third generation (F3). Remarkably, the autism-like behavioural phenotypes found in F1 persisted to the F2 and F3. Additionally, the frontal cortices of F1 and F3 showed some imbalanced expressions of excitatory/inhibitory synaptic markers, suggesting a transgenerational epigenetic inheritance. These results open the idea that E/I imbalance and ASD-like behavioural changes induced by environmental insults in mice can be epigenetically transmitted, at least, to the third generation. This study could help explain the unprecedented increase in ASD prevalence.


Subject(s)
Autism Spectrum Disorder , Behavior, Animal/drug effects , Frontal Lobe , Maternal Exposure/adverse effects , Valproic Acid/adverse effects , Animals , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Female , Frontal Lobe/metabolism , Frontal Lobe/physiopathology , Male , Mice , Mice, Inbred ICR , Pregnancy , Valproic Acid/pharmacology
7.
Biomol Ther (Seoul) ; 24(3): 207-43, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27133257

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance.

8.
Biomol Ther (Seoul) ; 24(1): 99-107, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26759708

ABSTRACT

Triclosan is an antimicrobial or sanitizing agent used in personal care and household products such as toothpaste, soaps, mouthwashes and kitchen utensils. There are increasing evidence of the potentially harmful effects of triclosan in many systemic and cellular processes of the body. In this study, we investigated the effects of triclosan in the survivability of cultured rat neural stem cells (NSCs). Cortical cells from embryonic day 14 rat embryos were isolated and cultured in vitro. After stabilizing the culture, triclosan was introduced to the cells with concentrations ranging from 1 µM to 50 µM and in varied time periods. Thereafter, cell viability parameters were measured using MTT assay and PI staining. TCS decreased the cell viability of treated NSC in a concentration-dependent manner along with increased expressions of apoptotic markers, cleaved caspase-3 and Bax, while reduced expression of Bcl2. To explore the mechanisms underlying the effects of TCS in NSC, we measured the activation of MAPKs and intracellular ROS. TCS at 50 µM induced the activations of both p38 and JNK, which may adversely affect cell survival. In contrast, the activities of ERK, Akt and PI3K, which are positively correlated with cell survival, were inhibited. Moreover, TCS at this concentration augmented the ROS generation in treated NSC and depleted the glutathione activity. Taken together, these results suggest that TCS can induce neurodegenerative effects in developing rat brains through mechanisms involving ROS activation and apoptosis initiation.

9.
Mol Neurobiol ; 53(10): 7312-7328, 2016 12.
Article in English | MEDLINE | ID: mdl-26696493

ABSTRACT

In addition to its classical role as a regulator of telomere length, recent reports suggest that telomerase reverse transcriptase (TERT) plays a role in the transcriptional regulation of gene expression such as ß-catenin-responsive pathways. Silencing or over-expression of TERT in cultured NPCs demonstrated that TERT induced glutamatergic neuronal differentiation. During embryonic brain development, expression of transcription factors involved in glutamatergic neuronal differentiation was increased in mice over-expressing TERT (TERT-tg mice). We observed increased expression of NMDA receptor subunits and phosphorylation of α-CaMKII in TERT-tg mice. TERT-tg mice showed autism spectrum disorder (ASD)-like behavioral phenotypes as well as lowered threshold against electrically induced seizure. Interestingly, the NMDA receptor antagonist memantine restored behavioral abnormalities in TERT-tg mice. Consistent with the alteration in excitatory/inhibitory (E/I) ratio, TERT-tg mice showed autism-like behaviors, abnormal synaptic organization, and function in mPFC suggesting the role of altered TERT activity in the manifestation of ASD, which is further supported by the significant association of certain SNPs in Korean ASD patients.


Subject(s)
Autistic Disorder/enzymology , Autistic Disorder/pathology , Telomerase/metabolism , Animals , Autistic Disorder/drug therapy , Behavior, Animal , Brain/embryology , Cell Differentiation , Cells, Cultured , Embryonic Development , Gene Knockdown Techniques , Gene Silencing , Glutamates/metabolism , Green Fluorescent Proteins/metabolism , Humans , Memantine/pharmacology , Memantine/therapeutic use , Mice, Transgenic , Neurons/metabolism , Neurons/ultrastructure , Phenotype , RNA, Small Interfering/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Synapses/ultrastructure , Transcription Factors/metabolism
10.
Mol Neurobiol ; 53(1): 40-56, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25404090

ABSTRACT

Males are predominantly affected by autism spectrum disorders (ASD) with a prevalence ratio of 5:1. However, the underlying pathological mechanisms governing the male preponderance of ASD remain unclear. Recent studies suggested that epigenetic aberrations may cause synaptic dysfunctions, which might be related to the pathophysiology of ASD. In this study, we used rat offspring prenatally exposed to valproic acid (VPA) as an animal model of ASD. We found male-selective abnormalities in the kinetic profile of the excitatory glutamatergic synaptic protein expressions linked to N-methyl-D-aspartate receptor (NMDAR), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and metabotropic glutamate receptor 5 (mGluR5) pathways in the prefrontal cortex of the VPA-exposed offspring at postnatal weeks 1, 2, and 4. Furthermore, VPA exposure showed a male-specific attenuation of the methyl-CpG-binding protein 2 (MeCP2) expressions both in the prefrontal cortex of offspring and in the gender-isolated neural progenitor cells (NPCs). In the gender-isolated NPCs culture, higher concentration of VPA induced an increased glutamatergic synaptic development along with decreased MeCP2 expression in both genders suggesting the role of MeCP2 in the modulation of synaptic development. In the small interfering RNA (siRNA) knock-down study, 50 pmol of Mecp2 siRNA inhibited the MeCP2 expression in male- but not in female-derived NPCs with concomitant induction of postsynaptic proteins such as PSD95. Taken together, we suggest that the male-inclined reduction of MeCP2 expression is involved in the abnormal development of glutamatergic synapse and male preponderance in the VPA animal models of ASD.


Subject(s)
Autistic Disorder/metabolism , Behavior, Animal/drug effects , Methyl-CpG-Binding Protein 2/metabolism , Prenatal Exposure Delayed Effects/metabolism , Sex Characteristics , Synapses/metabolism , Valproic Acid/pharmacology , Animals , Disease Models, Animal , Female , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism
11.
J Nutr Biochem ; 26(12): 1520-6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26452319

ABSTRACT

In recent years, the average consumption of sugar in humans from all ages has remarkably increased, exceeding the recommended limit. Pregnancy is a critical time for the global development of offsprings who are vulnerable to the deleterious effects of environmental factors. In this study, we investigated whether high sucrose consumption during pregnancy could affect the attention-deficit hyperactivity disorder (ADHD)-like neurobehavioral outcomes in offspring mice. Pregnant mice were randomly grouped and orally administered with either water as control (Con) or 30% wt/vol sucrose diluted in water at 6 (Suc6) or 9 (Suc9) g/kg dosage per day from gestational days 6 to 15. After the weaning period, offspring mice underwent a series of behavioral testing for locomotor activity, attention, and impulsivity. Although there is no obvious difference in gross development of offspring mice such as weight gain, high sucrose-exposed offspring mice showed a significantly increased locomotor activity. Moreover, these mice exhibited a dose-dependent decrease in attention and increase in impulsivity. In the striatum, a significantly increased dopamine transporter (DAT) mRNA expression was found in the Suc9 group along with dose-dependent decreases in the Drd1, Drd2 and Drd4 dopamine receptor subtypes. Furthermore, synaptosomal DAT protein expression was increased about twofold in the Suc9 group. Prenatal fructose exposure also induced hyperactive behavior in offspring mice suggesting the essential role of fructose in the dysregulated neurobehavioral development. These findings suggest prenatal sucrose consumption as a new risk factor for ADHD, which may need further attention and investigation in humans.


Subject(s)
Attention Deficit Disorder with Hyperactivity/etiology , Prenatal Exposure Delayed Effects , Sucrose/adverse effects , Animals , Behavior, Animal , Diet , Dopamine Plasma Membrane Transport Proteins/metabolism , Dose-Response Relationship, Drug , Female , Male , Maze Learning , Mice , Mice, Inbred ICR , Motor Activity/drug effects , Phenotype , Pregnancy , RNA, Messenger/metabolism , Receptors, Dopamine , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D4/metabolism , Risk Factors
12.
Neurochem Res ; 40(11): 2211-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26349765

ABSTRACT

The post translational modification of lysine acetylation is a key mechanism that regulates chromatin structure. Epigenetic readers, such as the BET domains, are responsible for reading histone lysine acetylation which is a hallmark of open chromatin structure, further providing a scaffold that can be accessed by RNA polymerases as well as transcription factors. Recently, several reports have assessed and highlighted the roles of epigenetic readers in various cellular contexts. However, little is known about their role in the regulation of inflammatory genes, which is critical in exquisitely tuning inflammatory responses to a variety of immune stimuli. In this study, we investigated the role of epigenetic readers BRD2 and BRD4 in the lipopolysaccharide (LPS)-induced immune responses in mouse primary astrocytes. Inflammatory stimulation by LPS showed that the levels of Brd2 mRNA and protein were increased, while Brd4 mRNA levels did not change. Knocking down of Brd2 mRNA using specific small interfering RNA (siRNA) in cultured mouse primary astrocytes inhibited LPS-induced mRNA expression and secretion of plasminogen activator inhibitor-1 (PAI-1). However, no other pro-inflammatory cytokines, such as Il-6, Il-1ß and Tnf-α, were affected. Indeed, treatment with bromodomain-containing protein inhibitor, JQ1, blocked Pai-1 mRNA expression through the inhibition of direct BRD2 protein-binding and active histone modification on Pai-1 promoter. Taken together, our data suggest that BRD2 is involved in the modulation of neuroinflammatory responses through PAI-1 and via the regulation of epigenetic reader BET protein, further providing a potential novel therapeutic strategy in neuroinflammatory diseases.


Subject(s)
Astrocytes/metabolism , Chromosomal Proteins, Non-Histone/genetics , Epigenesis, Genetic/genetics , Lipopolysaccharides/pharmacology , Serpin E2/biosynthesis , Serpin E2/genetics , Animals , Astrocytes/drug effects , Azepines/pharmacology , Cytokines/biosynthesis , Cytokines/genetics , Gene Knockdown Techniques , Histones/metabolism , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Mice , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , Primary Cell Culture , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Small Interfering , Serpin E2/antagonists & inhibitors , Transcription Factors/biosynthesis , Transcription Factors/genetics , Transfection , Triazoles/pharmacology
13.
Biomol Ther (Seoul) ; 23(3): 251-60, 2015 May.
Article in English | MEDLINE | ID: mdl-25995824

ABSTRACT

Propofol is an anesthetic agent that gained wide use because of its fast induction of anesthesia and rapid recovery post-anesthesia. However, previous studies have reported immediate neurodegeneration and long-term impairment in spatial learning and memory from repeated neonatal propofol administration in animals. Yet, none of those studies has explored the sex-specific long-term physical changes and behavioral alterations such as social (sociability and social preference), emotional (anxiety), and other cognitive functions (spatial working, recognition, and avoidance memory) after neonatal propofol treatment. Seven-day-old Wistar-Kyoto (WKY) rats underwent repeated daily intraperitoneal injections of propofol or normal saline for 7 days. Starting fourth week of age and onwards, rats were subjected to behavior tests including open-field, elevated-plus-maze, Y-maze, 3-chamber social interaction, novel-object-recognition, passive-avoidance, and rotarod. Rats were sacrificed at 9 weeks and hippocampal protein expressions were analyzed by Western blot. Results revealed long-term body weight gain alterations in the growing rats and sex-specific impairments in spatial (female) and recognition (male) learning and memory paradigms. A markedly decreased expression of hippocampal NMDA receptor GluN1 subunit in female- and increased expression of AMPA GluR1 subunit protein expression in male rats were also found. Other aspects of behaviors such as locomotor activity and coordination, anxiety, sociability, social preference and avoidance learning and memory were not generally affected. These results suggest that neonatal repeated propofol administration disrupts normal growth and some aspects of neurodevelopment in rats in a sex-specific manner.

14.
Biomol Ther (Seoul) ; 22(5): 406-13, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25414770

ABSTRACT

A substantial proportion of patients with autism spectrum disorder (ASD) display hyperactivity as a comorbid symptom. Exposure to valproic acid (VPA) during pregnancy produces ASD-like core behavioral phenotypes as well as hyperactivity in offspring both in human and experimental animals, which makes it a plausible model to study ASD-related neurobiological processes. In this study, we examined the effects of two of currently available attention defecit hyperactivity disorder (ADHD) medications, methylphenidate (MPH) and atomoxetine (ATX) targeting dopamine and norepinephrine transporters (DAT and NET), respectively, on hyperactive behavior of prenatally VPA-exposed rat offspring. In the prefrontal cortex of VPA exposed rat offspring, both mRNA and protein expression of DAT was increased as compared with control. VPA function as a histone deacetylase inhibitor (HDACi) and chromatin immunoprecipitation experiments demonstrated that the acetylation of histone bound to DAT gene promoter was increased in VPA-exposed rat offspring suggesting epigenetic mechanism of DAT regulation. Similarly, the expression of NET was increased, possibly via increased histone acetylation in prefrontal cortex of VPA-exposed rat offspring. When we treated the VPA-exposed rat offspring with ATX, a NET selective inhibitor, hyperactivity was reversed to control level. In contrast, MPH that inhibits both DAT and NET, did not produce inhibitory effects against hyperactivity. The results suggest that NET abnormalities may underlie the hyperactive phenotype in VPA animal model of ASD. Profiling the pharmacological responsiveness as well as investigating underlying mechanism in multiple models of ASD and ADHD may provide more insights into the neurobiological correlates regulating the behavioral abnormalities.

15.
PLoS One ; 9(8): e104927, 2014.
Article in English | MEDLINE | ID: mdl-25133713

ABSTRACT

Autism spectrum disorder (ASD) is a group of pervasive developmental disorders with core symptoms such as sociability deficit, language impairment, and repetitive/restricted behaviors. Although worldwide prevalence of ASD has been increased continuously, therapeutic agents to ameliorate the core symptoms especially social deficits, are very limited. In this study, we investigated therapeutic potential of donepezil for ASD using valproic acid-induced autistic animal model (VPA animal model). We found that prenatal exposure of valproic acid (VPA) induced dysregulation of cholinergic neuronal development, most notably the up-regulation of acetylcholinesterase (AChE) in the prefrontal cortex of affected rat and mouse offspring. Similarly, differentiating cortical neural progenitor cell in culture treated with VPA showed increased expression of AChE in vitro. Chromatin precipitation experiments revealed that acetylation of histone H3 bound to AChE promoter region was increased by VPA. In addition, other histone deacetyalse inhibitors (HDACIs) such as trichostatin A and sodium butyrate also increased the expression of AChE in differentiating neural progenitor cells suggesting the essential role of HDACIs in the regulation of AChE expression. For behavioral analysis, we injected PBS or donepezil (0.3 mg/kg) intraperitoneally to control and VPA mice once daily from postnatal day 14 all throughout the experiment. Subchronic treatment of donepezil improved sociability and prevented repetitive behavior and hyperactivity of VPA-treated mice offspring. Taken together, these results provide evidence that dysregulation of ACh system represented by the up-regulation of AChE may serve as an effective pharmacological therapeutic target against autistic behaviors in VPA animal model of ASD, which should be subjected for further investigation to verify the clinical relevance.


Subject(s)
Autistic Disorder/chemically induced , Autistic Disorder/drug therapy , Indans/therapeutic use , Piperidines/therapeutic use , Stereotyped Behavior/drug effects , Valproic Acid/toxicity , Acetylcholinesterase/metabolism , Animals , Autistic Disorder/metabolism , Behavior, Animal/drug effects , Blotting, Western , Cells, Cultured , Chromatin Immunoprecipitation , Disease Models, Animal , Donepezil , Female , Histones/metabolism , Immunohistochemistry , Mice, Inbred ICR , Pregnancy , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
16.
J Neurosci Res ; 92(5): 658-70, 2014 May.
Article in English | MEDLINE | ID: mdl-24510599

ABSTRACT

Preconception exposure to EtOH through the paternal route may affect neurobehavioral and developmental features of offspring. This study investigates the effects of paternal exposure to EtOH before conception on the hyperactivity, inattention, and impulsivity behavior of male offspring in mice. Sire mice were treated with EtOH in a concentration range approximating human binge drinking (0-4 g/kg/day EtOH) for 7 weeks and mated with untreated females mice to produce offspring. EtOH exposure to sire mice induced attention deficit hyperactivity disorder (ADHD)-like hyperactive, inattentive, and impulsive behaviors in offspring. As a mechanistic link, both protein and mRNA expression of dopamine transporter (DAT), a key determinant of ADHD-like phenotypes in experimental animals and humans, were significantly decreased by paternal EtOH exposure in cerebral cortex and striatum of offspring mice along with increased methylation of a CpG region of the DAT gene promoter. The increase in methylation of DAT gene promoter was also observed in the sperm of sire mice, suggesting germline changes in the epigenetic methylation signature of DAT gene by EtOH exposure. In addition, the expression of two key regulators of methylation-dependent epigenetic regulation of functional gene expression, namely, MeCP2 and DNMT1, was markedly decreased in offspring cortex and striatum sired by EtOH-exposed mice. These results suggest that preconceptional exposure to EtOH through the paternal route induces behavioral changes in offspring, possibly via epigenetic changes in gene expression, which is essential for the regulation of ADHD-like behaviors.


Subject(s)
Attention Deficit Disorder with Hyperactivity/chemically induced , Central Nervous System Depressants/toxicity , Dopamine Plasma Membrane Transport Proteins/metabolism , Epigenesis, Genetic/drug effects , Ethanol/toxicity , Prenatal Exposure Delayed Effects/physiopathology , Animals , Avoidance Learning/physiology , Disease Models, Animal , Dopamine Plasma Membrane Transport Proteins/genetics , Drinking Behavior , Exploratory Behavior/physiology , Female , Gene Expression Regulation/drug effects , Male , Maze Learning/physiology , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice , Mice, Inbred ICR , Phenotype , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced
17.
Mol Neurobiol ; 49(1): 512-28, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24030726

ABSTRACT

Imbalance in excitatory/inhibitory signal in the brain has been proposed as one of the main pathological features in autism spectrum disorders, although the underlying cellular and molecular mechanism is unclear yet. Because excitatory/inhibitory imbalance can be induced by aberration in glutamatergic/GABAergic neuronal differentiation, we investigated the mechanism of dysregulated neuronal differentiation between excitatory and inhibitory neurons in the embryonic and postnatal brain of prenatally valproic acid-exposed rat offspring, which is often used as an animal model of autism spectrum disorders. Transcription factor Pax6, implicated in glutamatergic neuronal differentiation, was transiently increased in embryonic cortex by valproate exposure, which resulted in the increased expression of glutamatergic proteins in postnatal brain of offspring. Chromatin immunoprecipitation showed increased acetylated histone binding on Pax6 promoter region, which may underlie the transcriptional up-regulation of Pax6. Other histone deacetylase (HDAC) inhibitors including TSA and SB but not valpromide, which is devoid of HDAC inhibitor activity, induced Pax6 up-regulation. Silencing Pax6 expression in cultured rat primary neural progenitor cells demonstrated that up-regulation of Pax6 plays an essential role in valproate-induced glutamatergic differentiation. Blocking glutamatergic transmission with MK-801 or memantine treatment, and to a lesser extent with MPEP treatment, reversed the impaired social behaviors and seizure susceptibility of prenatally valproate-exposed offspring. Together, environmental factors may contribute to the imbalance in excitatory/inhibitory neuronal activity in autistic brain by altering expression of transcription factors governing glutamatergic/GABAergic differentiation during fetal neural development, in conjunction with the genetic preload.


Subject(s)
Autistic Disorder/metabolism , Cerebral Cortex/metabolism , Eye Proteins/physiology , Glutamic Acid/physiology , Homeodomain Proteins/physiology , Paired Box Transcription Factors/physiology , Prenatal Exposure Delayed Effects/metabolism , Repressor Proteins/physiology , Valproic Acid/toxicity , Animals , Autistic Disorder/chemically induced , Autistic Disorder/pathology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Eye Proteins/biosynthesis , Female , Homeodomain Proteins/biosynthesis , Neurogenesis/drug effects , Neurogenesis/physiology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , PAX6 Transcription Factor , Paired Box Transcription Factors/biosynthesis , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Rats , Repressor Proteins/biosynthesis , Up-Regulation/physiology
18.
Cell Mol Neurobiol ; 34(2): 297-305, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24338128

ABSTRACT

Fragile X mental retardation protein (FMRP) is encoded by Fmr1 gene in which mutation is known to cause fragile X syndrome characterized by mental impairment and other psychiatric symptoms similar to autism spectrum disorders. FMRP plays important roles in cellular mRNA biology such as transport, stability, and translation as an RNA-binding protein. In the present study, we identified potential role of FMRP in the neural differentiation, using cortical neural progenitor cells from Sprague-Dawley rat. We newly found NeuroD1, an essential regulator of glutamatergic neuronal differentiation, as a new mRNA target interacting with FMRP in co-immunoprecipitation experiments. We also identified FMRP as a regulator of neuronal differentiation by modulating NeuroD1 expression. Down-regulation of FMRP by siRNA also increased NeuroD1 expression along with increased pre- and post-synaptic development of glutamatergic neuron, as evidenced by Western blot and immunocytochemistry. On the contrary, cells harboring FMRP over-expression construct showed decreased NeuroD1 expression. Treatment of cultured neural precursor cells with a histone deacetylase inhibitor, valproic acid known as an inducer of hyper-glutamatergic neuronal differentiation, down-regulated the expression of FMRP, and induced NeuroD1 expression. Our study suggests that modulation of FMRP expression regulates neuronal differentiation by interaction with its binding target mRNA, and provides an example of the gene and environmental interaction regulating glutamatergic neuronal differentiation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation , Fragile X Mental Retardation Protein/metabolism , Gene Expression Regulation , Nerve Tissue Proteins/genetics , Neural Stem Cells/cytology , Neurons/cytology , Protein Biosynthesis , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Glutamates/metabolism , Nerve Tissue Proteins/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurons/drug effects , Neurons/metabolism , Protein Binding/drug effects , Protein Biosynthesis/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Synapses/drug effects , Synapses/metabolism , Valproic Acid/pharmacology
19.
Biomol Ther (Seoul) ; 21(3): 222-8, 2013 May 30.
Article in English | MEDLINE | ID: mdl-24265868

ABSTRACT

Although the role of α-synuclein aggregation on Parkinson's disease is relatively well known, the physiological role and the regulatory mechanism governing the expression of α-synuclein are unclear yet. We recently reported that α-synuclein is expressed and secreted from cultured astrocytes. In this study, we investigated the effect of valproic acid (VPA), which has been suggested to provide neuroprotection by increasing α-synuclein in neuron, on α-synuclein expression in rat primary astrocytes. VPA concentrationdependently increased the protein expression level of α-synuclein in cultured rat primary astrocytes with concomitant increase in mRNA expression level. Likewise, the level of secreted α-synuclein was also increased by VPA. VPA increased the phosphorylation of Erk1/2 and JNK and pretreatment of a JNK inhibitor SP600125 prevented the VPA-induced increase in α-synuclein. Whether the increased α-synuclein in astrocytes is involved in the reported neuroprotective effects of VPA awaits further investigation.

20.
Neurochem Res ; 38(9): 1960-72, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23824559

ABSTRACT

Cytoplasmic polyadenylation binding protein 1 (CPEB1) is a RNA binding protein, which regulates translation of target mRNAs by regulating polyadenylation status. CPEB1 plays important roles in the regulation of germline cell development by modulating cell cycle progression through the polyadenylation of target mRNAs such as cyclin B1. Similar mechanism is reported in proliferating astrocytes by us, although CPEB1 is involved in the transport of target mRNAs as well as local translation at dendritic spines. In this study, we found the expression of CPEB1 in cultured rat primary neural progenitor cells (NPCs). EGF stimulation of cultured NPCs induced rapid phosphorylation of CPEB1, a hallmark of CPEB1-dependent translational control along with cyclin B1 polyadenylation and translation. EGF-induced activation of ERK1/2 and Aurora A kinase was responsible for CPEB1 phosphorylation. Pharmacological inhibition studies suggested that ERK1/2 is involved in the activation of Aurora A kinase and regulation of CPEB1 phosphorylation in cultured NPCs. Long-term incubation in EGF resulted in the down-regulation of CPEB1 expression, which further increased expression of cyclin B1 and cell cycle progression. When we down-regulated the expression of CPEB1 in NPCs by siRNA transfection, the proliferation of NPCs was increased. Increased NPCs proliferation by down-regulation of CPEB1 resulted in eventual up-regulation of neuronal differentiation with increase in both pre- and post-synaptic proteins. The results from the present study may suggest the importance of translational control in the regulation of neuronal development, an emerging concept in many neurodevelopmental and psychiatric disorders such as autism spectrum disorder.


Subject(s)
Cell Proliferation , Neural Stem Cells/cytology , Neurons/cytology , RNA-Binding Proteins/physiology , Animals , Base Sequence , Cells, Cultured , DNA Primers , Female , Pregnancy , RNA-Binding Proteins/genetics , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...