Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 5568, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33173031

ABSTRACT

Since its discovery almost 70 years ago, the hologram has been considered to reproduce the most realistic three dimensional images without visual side effects. Holographic video has been extensively researched for commercialization, since Benton et al. at MIT Media Lab developed the first holographic video systems in 1990. However, commercially available holographic video displays have not been introduced yet for several reasons: narrow viewing angle, bulky optics and heavy computing power. Here we present an interactive slim-panel holographic video display using a steering-backlight unit and a holographic video processor to solve the above issues. The steering-backlight unit enables to expand the viewing angle by 30 times and its diffractive waveguide architecture makes a slim display form-factor. The holographic video processor computes high quality holograms in real-time on a single-chip. We suggest that the slim-panel holographic display can provide realistic three-dimensional video in office and household environments.

2.
Appl Opt ; 59(24): 7462-7468, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32902515

ABSTRACT

A slim beam deflector that satisfies both a large steering angle and a large area can be very useful in various applications. However, a smaller electrode pitch for a large steering angle and enlargement of its area are trade-off relations due to the limited number of control channels in an electrically tunable beam deflector system. For a large steering angle in the active area where actual diffraction occurs, an indium tin oxide electrode of 2 µm pitch was implemented through a stepper lithography. The via-hole process was developed to expand the reduced active area due to the small electrode pitch. We developed a beam deflector with 7200 controllable channels in an active area of 14.4mm×14.4mm. The maximum steering angle is 7.643° at a wavelength of 532 nm.

3.
Appl Opt ; 57(18): 5090-5094, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-30117970

ABSTRACT

Highly efficient transmission-type beam deflectors that have high angular resolution have been widely used for various applications. Continuously tunable beam deflectors have also been needed for many purposes. An indium-tin-oxide (ITO), widely used for transparent electrodes, was placed on the upper and lower glass substrate. The ITO layer on the lower substrate was patterned by the contact mask aligner for relatively wide input and output pad compared to main grating ITO patterns in the active area. These input and output pads on the lower substrate are connected to each driving integrated circuit (IC), which has 360 channels for continuous control. A small pixel pitch of grating patterns of 6 µm (the electrode width is 3 µm with a 3 µm spacing) was developed, and the maximum diffraction angle is calculated and measured at 2.541° with a wavelength of 532 nm. A minimal cell gap of 2.5 µm was applied for the full 2π phase modulation by using a high-birefringence liquid crystal. A driving module for continuous beam steering is also developed and applied to the beam deflector system. A diffraction efficiency of about 50.9% is observed at an angle of diffraction about 2.541°.

4.
Opt Express ; 25(22): 26781-26791, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29092163

ABSTRACT

The coherent backlight unit (BLU) using a holographic optical element (HOE) for full-color flat-panel holographic display is proposed. The HOE BLU consists of two reflection type HOEs that change the optical beam path and shape by diffraction. The illumination area of backlight is 150 mm x 90 mm and the thickness is 10 mm, which is slim compared to other conventional coherent backlight units for holographic display systems. This backlight unit exhibits a total efficiency of 8.0% at red (660 nm), 7.7% at green (532 nm), and 3.2% at blue (460 nm) using optimized recording conditions for each wavelength. As a result, we could get a bright full color hologram image.

5.
Opt Lett ; 39(15): 4571-4, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25078231

ABSTRACT

We investigated the photorefractivity enhancement of polymeric composites by introducing gold nanoparticles (NPs). The gold NPs enhance the photocharge generation rate of sensitizers through plasmon resonance coupling achieved between NPs and sensitizers. Systematic studies show that the presence of gold NPs has increased photocharge generation efficiency, photoconductivity, diffraction efficiency, refractive index modulation, and photorefractive (PR) grating formation rate. The gold-NP-doped PR sample exhibits 2 times larger photocharge generation efficiency and photoconductivity, and 2.5 times faster PR grating formation rate compared to the control sample without the NPs.

6.
Opt Express ; 21(12): 14047-55, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23787594

ABSTRACT

We propose a hogel overlapping method for the holographic printer to enhance the lateral resolution of holographic stereograms. The hogel size is directly related to the lateral resolution of the holographic stereogram. Our analysis by computer simulation shows that there is a limit to decreasing the hogel size while printing holographic stereograms. Instead of reducing the size of hogel, the lateral resolution of holographic stereograms can be enhanced by printing overlapped hogels, which makes it possible to take advantage of multiplexing property of the volume hologram. We built a holographic printer, and recorded two holographic stereograms using the conventional and proposed overlapping methods. The images and movies of the holographic stereograms experimentally captured were compared between the conventional and proposed methods. The experimental results confirm that the proposed hogel overlapping method improves the lateral resolution of holographic stereograms compared to the conventional holographic printing method.


Subject(s)
Computer-Aided Design , Holography/instrumentation , Image Enhancement/instrumentation , Imaging, Three-Dimensional/instrumentation , Models, Theoretical , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
7.
J Phys Chem B ; 113(6): 1592-7, 2009 Feb 12.
Article in English | MEDLINE | ID: mdl-19193164

ABSTRACT

We investigated a dependence of the grating formation on the temperature in polymeric photorefractive (PR) composite, in terms of magnitude and buildup speed of the PR grating. For polymeric PR materials, the temperature is one of the most important factors together with the external electric field because it is closely related on photocharge generation efficiency, mobility of generated carrier, electro-optic coefficient tensor, and so on. Above the glass transition temperature, the diffraction efficiency of degenerate four-wave mixing decreased with increasing the temperature; it can be explained with the magnitude of space-charge field and the electro-optic behavior at different temperatures. The space-charge field decreased linearly with increasing temperature due to a decrease in the photocharge generation efficiency and an increase in the hole detrapping by the high dark conductivity. Also as we expected, the PR grating buildup speed, which is strongly dependent on the photoconductivity, steeply decreased with increasing the temperature, and its tendency was similar to the temperature dependence of the phase shift.


Subject(s)
Polymers/chemistry , Refractometry/methods , Temperature , Light , Polymers/radiation effects
8.
J Chem Phys ; 123(24): 244905, 2005 Dec 22.
Article in English | MEDLINE | ID: mdl-16396571

ABSTRACT

The space-charge field built in a polymeric photorefractive polymer was calculated by a simple method based on the oriented gas model. When anisotropic chromophores in a photorefractive polymer were exposed to an external field, they oriented preferentially to exhibit a birefringence. Then, under illumination of two coherent beams and an external field, they reoriented to form a photorefractive grating. During the formation of the grating, the chromophores were reoriented by the space-charge field as well as by the external applied field. The birefringence induced in the material by an external electric field was determined by measuring the transmittance of the sample which is placed between crossed polarizers, where birefringence depicts the orientation of the chromophores. By measuring the diffraction efficiency with a modified degenerate four-wave mixing setup, the index amplitude of the grating was determined. Finally, the space-charge field was determined by comparing the diffraction efficiency with the birefringence with respect to the applied electric field. In our study, the space-charge field was about 20% of the external applied field, which coincided with previous results obtained from our laboratory.

SELECTION OF CITATIONS
SEARCH DETAIL
...