Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Res Pract ; 16(Suppl 1): S89-S112, 2022 May.
Article in English | MEDLINE | ID: mdl-35651839

ABSTRACT

An accurate assessment of the recommended calcium (Ca) intake may contribute to reducing the risk of fractures and chronic diseases, ultimately improving quality of life. This review was performed to summarize key findings of Ca studies, investigate the effect of Ca intake on health outcomes, and determine the adequacy of evidence to revise the 2015 Dietary Reference Intakes for Koreans (KDRIs) for Ca in 2020. Databases were searched for intervention studies that assessed health outcomes by providing Ca in diets or as supplements. The framework of the systematic review comprised conducting literature searches, data extraction, quality assessment of the literature, and summarizing key findings relevant to set the Estimated Average Requirement (EAR) and Tolerable Upper Intake Level (UL) for Ca for the 2020 KDRI. The final search was performed in June 2019. A total of 13,309 studies were identified through databases and manual search. Sixtyfive studies were included in the final quality assessment and were summarized according to health indicators. As bone health was used as an indicator of the EAR for Ca, literature reports on bone health were further categorized by the life-cycle stage of the participants. This systematic review did not find new evidence that could be applied to the general Korean adult population, including postmenopausal women, for defining a new EAR for Ca in the 2020 KDRIs. Evidence in most of the reviewed literature was considered weak; however, some evidence was found that could improve the criteria on how the EAR for Ca was determined in children and adolescents. A review of the literature for the 2020 KDRIs for Ca did not find strong evidence in order to change the recommended values of the 2015 KDRIs. More clinical interventions are required among Koreans to strengthen the body of evidence to warrant the revision of the KDRIs.

2.
Nanomaterials (Basel) ; 10(6)2020 May 31.
Article in English | MEDLINE | ID: mdl-32486471

ABSTRACT

PC61BM is commonly used in perovskite solar cells (PSC) as the electron transport material (ETM). However, PC61BM film has various disadvantages, such as its low coverage or the many pinholes that appear due to its aggregation behavior. These faults may lead to undesirable direct contact between the metal cathode and perovskite film, which could result in charge recombination at the perovskite/metal interface. In order to overcome this problem, three alternative non-fullerene electron materials were applied to inverted PSCs; they were evaluated on suitability as electron transport layers. The roles and effects of these non-fullerene ETMs on device performance were studied using photoluminescence (PL) measurements, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), internal resistance in PSC measurements, and conductive atomic force microscopy (C-AFM). It was found that one of the tested materials, IT-4f, showed excellent electron extraction ability and was associated with reduced recombination. The PSC with IT-4f as the ETM produced better cell-performance; it had an average PCE of 11.21%, which makes it better than the ITIC and COi8DFIC-based devices. Finally, IT-4f was compared with PC61BM; it was found that the two materials have quite comparable efficiency and stability levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...