Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Aging Cell ; : e14203, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769776

ABSTRACT

The relationship between aging and RNA biogenesis and trafficking is attracting growing interest, yet the precise mechanisms are unknown. The THO complex is crucial for mRNA cotranscriptional maturation and export. Herein, we report that the THO complex is closely linked to the regulation of lifespan. Deficiencies in Hpr1 and Tho2, components of the THO complex, reduced replicative lifespan (RLS) and are linked to a novel Sir2-independent RLS control pathway. Although transcript sequestration in hpr1Δ or tho2Δ mutants was countered by exosome component Rrp6, loss of this failed to mitigate RLS defects in hpr1Δ. However, RLS impairment in hpr1Δ or tho2Δ was counteracted by the additional expression of Nrd1-specific mutants that interacted with Rrp6. This effect relied on the interaction of Nrd1, a transcriptional regulator of aging-related genes, including ribosome biogenesis or RNA metabolism genes, with RNA polymerase II. Nrd1 overexpression reduced RLS in a Tho2-dependent pathway. Intriguingly, Tho2 deletion mirrored Nrd1 overexpression effects by inducing arbitrary Nrd1 chromatin binding. Furthermore, our genome-wide ChIP-seq analysis revealed an increase in the recruitment of Nrd1 to translation-associated genes, known to be related to aging, upon Tho2 loss. Taken together, these findings underscore the importance of Tho2-mediated Nrd1 escorting in the regulation of lifespan pathway through transcriptional regulation of aging-related genes.

2.
Mol Cells ; 46(8): 473-475, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37587750

Subject(s)
NAD , Neoplasms , Humans
3.
Orthop Nurs ; 42(4): 251-261, 2023.
Article in English | MEDLINE | ID: mdl-37494906

ABSTRACT

Patients with rheumatic disease have a high prevalence of metabolic syndrome. The purpose of this study was to investigate temporal changes in metabolic syndrome indices and to identify factors influencing metabolic syndrome development. A prospective cohort study design was adopted. The study participants were 68 outpatients with a rheumatic disease at an outpatient clinic of a university hospital. Data on demographics, health-related characteristics, steroid use, serum C-reactive protein levels, and metabolic syndrome indices were collected between December 2017 and March 2021. Temporal changes in body mass indices, serum triglyceride, and cholesterol levels were significant. Body mass indices, diastolic blood pressure, serum triglyceride, high-density lipoprotein, and fasting blood glucose levels at time of diagnosis were found to influence metabolic syndrome development. Temporal changes in serum triglyceride, cholesterol, and fasting blood glucose levels were significantly influenced by inflammatory status. The findings demonstrate the importance of controlling inflammatory activities in the context of inhibiting the progression of metabolic syndrome and rheumatic diseases.


Subject(s)
Metabolic Syndrome , Rheumatic Diseases , Humans , Metabolic Syndrome/complications , Metabolic Syndrome/epidemiology , Blood Glucose/metabolism , Prospective Studies , Rheumatic Diseases/complications , Triglycerides , Cholesterol , Body Mass Index
4.
Front Microbiol ; 14: 1178748, 2023.
Article in English | MEDLINE | ID: mdl-37275144

ABSTRACT

Geobacillus stearothermophilus is a highly thermophilic, spore-forming Gram-positive bacterium that causes flat sour spoilage in low-acid canned foods. To address this problem, we isolated G. stearothermophilus-infecting phage GR1 from the soil and characterized its endolysin LysGR1. Phage GR1 belongs to the Siphoviridae family and possesses a genome of 79,387 DNA bps with 108 putative open reading frames. GR1 demonstrated a very low degree of homology to previously reported phages, indicating that it is novel. The endolysin of GR1 (LysGR1) contains an N-terminal amidase domain as an enzymatically active domain (EAD) and two C-terminal LysM domains as a cell wall binding domain (CBD). Although GR1 is specific to certain strains of G. stearothermophilus, LysGR1 showed a much broader lytic range, killing all the tested strains of G. stearothermophilus and several foodborne pathogens, such as Clostridium perfringens, Listeria monocytogenes, and Escherichia coli O157:H7. LysGR1_EAD, alone, also exhibits lytic activity against a wide range of bacteria, including Bacillus cereus, which is not terminated by a full-length endolysin. Both LysGR1 and its EAD effectively remove the G. stearothermophilus biofilms and are highly thermostable, retaining about 70% of their lytic activity after a 15-min incubation at 70°C. Considering the high thermal stability, broad lytic activity, and biofilm reduction efficacy of LysGR1 and its EAD, we hypothesize that these enzymes could act as promising biocontrol agents against G. stearothermophilus and as foodborne pathogens.

5.
Exp Mol Med ; 55(6): 1218-1231, 2023 06.
Article in English | MEDLINE | ID: mdl-37258579

ABSTRACT

The signaling pathways governing acetaminophen (APAP)-induced liver injury have been extensively studied. However, little is known about the ubiquitin-modifying enzymes needed for the regulation of APAP-induced liver injury. Here, we examined whether the Pellino3 protein, which has E3 ligase activity, is needed for APAP-induced liver injury and subsequently explored its molecular mechanism. Whole-body Peli3-/- knockout (KO) and adenovirus-mediated Peli3 knockdown (KD) mice showed reduced levels of centrilobular cell death, infiltration of immune cells, and biomarkers of liver injury, such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST), upon APAP treatment compared to wild-type (WT) mice. Peli3 deficiency in primary hepatocytes decreased mitochondrial and lysosomal damage and reduced the mitochondrial reactive oxygen species (ROS) levels. In addition, the levels of phosphorylation at serine 9 in the cytoplasm and mitochondrial translocation of GSK3ß were decreased in primary hepatocytes obtained from Peli3-/- KO mice, and these reductions were accompanied by decreases in JNK phosphorylation and mitochondrial translocation. Pellino3 bound more strongly to GSK3ß compared with JNK1 and JNK2 and induced the lysine 63 (K63)-mediated polyubiquitination of GSK3ß. In rescue experiments, the ectopic expression of wild-type Pellino3 in Peli3-/- KO hepatocytes restored the mitochondrial translocation of GSK3ß, but this restoration was not obtained with expression of a catalytically inactive mutant of Pellino3. These findings are the first to suggest a mechanistic link between Pellino3 and APAP-induced liver injury through the modulation of GSK3ß polyubiquitination.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury, Chronic , Animals , Mice , Acetaminophen/adverse effects , Phosphorylation , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver/metabolism , Hepatocytes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Mice, Inbred C57BL
6.
Mol Metab ; 55: 101402, 2022 01.
Article in English | MEDLINE | ID: mdl-34838715

ABSTRACT

OBJECTIVE: Diet-induced obesity is often associated with nonalcoholic fatty liver disease (NAFLD), which instigates severe metabolic disorders, including cirrhosis, hepatocellular carcinoma, and type 2 diabetes. We have shown that hepatic depletion of CREB regulated transcription co-activator (CRTC) 2 protects mice from the progression of diet-induced fatty liver phenotype, although the exact mechanism by which CRTC2 modulates this process is elusive to date. Here, we investigated the role of hepatic CRTC2 in the instigation of NAFLD in mammals. METHODS: Crtc2 liver-specific knockout (Crtc2 LKO) mice and Crtc2 flox/flox (Crtc2 f/f) mice were fed a high fat diet (HFD) for 7-8 weeks. Body weight, liver weight, hepatic lipid contents, and plasma triacylglycerol (TG) levels were determined. Western blot analysis was performed to determine Sirtuin (SIRT) 1, tuberous sclerosis complex (TSC) 2, and mammalian target of rapamycin complex (mTORC) 1 activity in the liver. Effects of Crtc2 depletion on lipogenesis was determined by measuring lipogenic gene expression (western blot analysis and qRT-PCR) in the liver as well as Oil red O staining in hepatocytes. Effects of miR-34a on mTORC1 activity and hepatic lipid accumulation was assessed by AAV-miR-34a virus in mice and Ad-miR-34a virus and Ad-anti-miR-34a virus in hepatocytes. Autophagic flux was assessed by western blot analysis after leupeptin injection in mice and bafilomycin treatment in hepatocytes. Lipophagy was assessed by transmission electron microscopy and confocal microscopy. Expression of CRTC2 and p-S6K1 in livers of human NAFLD patients was assessed by immunohistochemistry. RESULTS: We found that expression of CRTC2 in the liver is highly induced upon HFD-feeding in mice. Hepatic depletion of Crtc2 ameliorated HFD-induced fatty liver disease phenotypes, with a pronounced inhibition of the mTORC1 pathway in the liver. Mechanistically, we found that expression of TSC2, a potent mTORC1 inhibitor, was enhanced in Crtc2 LKO mice due to the decreased expression of miR-34a and the subsequent increase in SIRT1-mediated deacetylation processes. We showed that ectopic expression of miR-34a led to the induction of mTORC1 pathway, leading to the hepatic lipid accumulation in part by limiting lipophagy and enhanced lipogenesis. Finally, we found a strong association of CRTC2, miR-34a and mTORC1 activity in the NAFLD patients in humans, demonstrating a conservation of signaling pathways among species. CONCLUSIONS: These data collectively suggest that diet-induced activation of CRTC2 instigates the progression of NAFLD by activating miR-34a-mediated lipid accumulation in the liver via the simultaneous induction of lipogenesis and inhibition of lipid catabolism. Therapeutic approach to specifically inhibit CRTC2 activity in the liver could be beneficial in combating NAFLD in the future.


Subject(s)
Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Transcription Factors/metabolism , Animals , Autophagy/genetics , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Hepatocytes/metabolism , Lipid Metabolism/physiology , Lipogenesis/genetics , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Non-alcoholic Fatty Liver Disease/physiopathology , Obesity/metabolism , Signal Transduction , Sirtuin 1/metabolism , Transcription Factors/genetics
7.
Cell Mol Gastroenterol Hepatol ; 12(5): 1761-1787, 2021.
Article in English | MEDLINE | ID: mdl-34358714

ABSTRACT

BACKGROUND & AIMS: The liver is the major organ for metabolizing lipids, and malfunction of the liver leads to various diseases. Nonalcoholic fatty liver disease is rapidly becoming a major health concern worldwide and is characterized by abnormal retention of excess lipids in the liver. CCCTC-binding factor (CTCF) is a highly conserved zinc finger protein that regulates higher-order chromatin organization and is involved in various gene regulation processes. Here, we sought to determine the physiological role of CTCF in hepatic lipid metabolism. METHODS: We generated liver-specific, CTCF-ablated and/or CD36 whole-body knockout mice. Overexpression or knockdown of peroxisome proliferator-activated receptor (PPAR)γ in the liver was achieved using adenovirus. Mice were examined for development of hepatic steatosis and inflammation. RNA sequencing was performed to identify genes affected by CTCF depletion. Genome-wide occupancy of H3K27 acetylation, PPARγ, and CTCF were analyzed by chromatin immunoprecipitation sequencing. Genome-wide chromatin interactions were analyzed by in situ Hi-C. RESULTS: Liver-specific, CTCF-deficient mice developed hepatic steatosis and inflammation when fed a standard chow diet. Global analysis of the transcriptome and enhancer landscape revealed that CTCF-depleted liver showed enhanced accumulation of PPARγ in the nucleus, which leads to increased expression of its downstream target genes, including fat storage-related gene CD36, which is involved in the lipid metabolic process. Hepatic steatosis developed in liver-specific, CTCF-deficient mice was ameliorated by repression of PPARγ via pharmacologic blockade or adenovirus-mediated knockdown, but hardly rescued by additional knockout of CD36. CONCLUSIONS: Our data indicate that liver-specific deletion of CTCF leads to hepatosteatosis through augmented PPARγ DNA-binding activity, which up-regulates its downstream target genes associated with the lipid metabolic process.


Subject(s)
CCCTC-Binding Factor/deficiency , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , PPAR gamma/metabolism , Signal Transduction , Animals , Biomarkers , Disease Susceptibility , Gene Expression Profiling , Gene Expression Regulation , Histones/metabolism , Immunohistochemistry , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/pathology , Organ Specificity/genetics , Phenotype
8.
Diabetes ; 70(8): 1664-1678, 2021 08.
Article in English | MEDLINE | ID: mdl-34039627

ABSTRACT

Protein arginine methyltransferase (PRMT) 1 is involved in the regulation of various metabolic pathways such as glucose metabolism in liver and atrophy in the skeletal muscle. However, the role of PRMT1 in the fat tissues under the disease state has not been elucidated to date. In this study, we delineate the function of this protein in adipocytes in vivo. PRMT1 expression was abundant in the white adipose tissues (WAT), which was induced upon a high-fat diet in mice and by obesity in humans. We found that adipocyte-specific depletion of Prmt1 resulted in decreased fat mass without overall changes in body weight in mice. Mechanistically, the depletion of Prmt1 in WAT led to the activation of the AMPK pathway, which was causal to the increased lipophagy, mitochondrial lipid catabolism, and the resultant reduction in lipid droplet size in WAT in vivo. Interestingly, despite the increased energy expenditure, we observed a promotion of adipose tissue inflammation and an ectopic accumulation of triglycerides in the peripheral tissues in Prmt1 adipocyte-specific knockout mice, which promoted the impaired insulin tolerance that is reminiscent of mouse models of lipodystrophy. These data collectively suggest that PRMT1 prevents WAT from excessive degradation of triglycerides by limiting AMPK-mediated lipid catabolism to control whole-body metabolic homeostasis in diet-induced obesity conditions.


Subject(s)
Adipocytes/metabolism , Glucose/metabolism , Homeostasis/physiology , Obesity/genetics , Protein-Arginine N-Methyltransferases/genetics , 3T3-L1 Cells , Adenylate Kinase/metabolism , Adipose Tissue/metabolism , Animals , Body Weight/physiology , Diet, High-Fat , Insulin Resistance/physiology , Lipid Metabolism/physiology , Male , Mice , Mice, Knockout , Obesity/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Signal Transduction/physiology
9.
Autophagy ; 15(6): 1069-1081, 2019 06.
Article in English | MEDLINE | ID: mdl-30653406

ABSTRACT

Protein arginine methyltransferases (PRMTs) have emerged as important regulators of skeletal muscle metabolism and regeneration. However, the direct roles of the various PRMTs during skeletal muscle remodeling remain unclear. Using skeletal muscle-specific prmt1 knockout mice, we examined the function and downstream targets of PRMT1 in muscle homeostasis. We found that muscle-specific PRMT1 deficiency led to muscle atrophy. PRMT1-deficient muscles exhibited enhanced expression of a macroautophagic/autophagic marker LC3-II, FOXO3 and muscle-specific ubiquitin ligases, TRIM63/MURF-1 and FBXO32, likely contributing to muscle atrophy. The mechanistic study reveals that PRMT1 regulates FOXO3 through PRMT6 modulation. In the absence of PRMT1, increased PRMT6 specifically methylates FOXO3 at arginine 188 and 249, leading to its activation. Finally, we demonstrate that PRMT1 deficiency triggers FOXO3 hyperactivation, which is abrogated by PRMT6 depletion. Taken together, PRMT1 is a key regulator for the PRMT6-FOXO3 axis in the control of autophagy and protein degradation underlying muscle maintenance. Abbreviations: Ad-RNAi: adenovirus-delivered small interfering RNA; AKT: thymoma viral proto-oncogene; AMPK: AMP-activated protein kinase; Baf A1: bafilomycin A1; CSA: cross-sectional area; EDL: extensor digitorum longus; FBXO32: F-box protein 32; FOXO: forkhead box O; GAS: gatrocnemieus; HDAC: histone deacetylase; IGF: insulin-like growth factor; LAMP: lysosomal-associated membrane protein; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; mKO: Mice with skeletal muscle-specific deletion of Prmt1; MTOR: mechanistic target of rapamycin kinase; MYH: myosin heavy chain; MYL1/MLC1f: myosin, light polypeptide 1; PRMT: protein arginine N-methyltransferase; sgRNA: single guide RNA; SQSTM1: sequestosome 1; SOL: soleus; TA: tibialis anterior; TRIM63/MURF-1: tripartite motif-containing 63; YY1: YY1 transcription factor.


Subject(s)
Autophagy/genetics , Forkhead Box Protein O3/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Animals , Forkhead Box Protein O3/chemistry , Forkhead Box Protein O3/genetics , HEK293 Cells , Histone Deacetylase 2/metabolism , Histone Deacetylases/metabolism , Humans , Methylation , Mice , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/pathology , Phosphorylation , Proto-Oncogene Mas , Signal Transduction/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , YY1 Transcription Factor/metabolism
10.
BMC Gastroenterol ; 17(1): 124, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29179698

ABSTRACT

BACKGROUND: Acetaminophen (APAP) is a readily available and safe painkiller. However, its overdose is the most common cause of acute liver injury (ALI). Many predisposing factors contribute to susceptibility to APAP-induced ALI. Non-alcoholic fatty liver disease (NAFLD), the major cause of chronic liver disease, is considered an important predictor of APAP-induced ALI, although the exact mechanism controversial. In this study, we aimed to elucidate the effects of NAFLD on APAP-induced ALI. METHODS: Two groups of mice, normal chow (NC) diet-fed and fast food (FF) diet-fed mice for 14 weeks, were further divided into two subgroups: intraperitoneally injected with either saline (NC-S and FF-S groups) or APAP (NC-A and FF-A groups). Biochemical tests, histological analysis, quantitative PCR, and western blotting were conducted. RESULTS: Alanine aminotransferase (ALT) level (199.0 ± 39.0 vs. 63.8 ± 7.4 IU/L, p < 0.05) and NAFLD activity score (0 vs. 4.5 ± 0.22) were significantly higher in mice in FF-S group than those in NC-S group. ALI features such as ALT level (8447.8 ± 1185.3 vs. 836.6 ± 185.1 IU/L, p < 0.001) and centrizonal necrosis were prominent and mRNA levels of Trib3 (RR, 1.81) was high in mice in the NC-A group. Levels of CYP2E1 and anti-inflammatory molecules such as PPAR-γ, p62, and NRF2 were high in mice in the FF-A group. CONCLUSIONS: Our results showed that while the FF diet clearly induced non-alcoholic steatohepatitis and metabolic syndrome, NAFLD also attenuates APAP-induced ALI by inducing anti-inflammatory molecules such as PPAR-γ.


Subject(s)
Acetaminophen/adverse effects , Analgesics, Non-Narcotic/adverse effects , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/prevention & control , Fast Foods/adverse effects , Non-alcoholic Fatty Liver Disease/complications , Acetaminophen/metabolism , Alanine Transaminase/metabolism , Analgesics, Non-Narcotic/metabolism , Animals , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Interferon-gamma/metabolism , Male , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Necrosis , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Stress , PPAR gamma/metabolism
11.
J Clin Invest ; 127(11): 4118-4123, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28990936

ABSTRACT

Olfactory receptors (ORs) are present in tissues outside the olfactory system; however, the function of these receptors remains relatively unknown. Here, we determined that olfactory receptor 544 (Olfr544) is highly expressed in the liver and adipose tissue of mice and regulates cellular energy metabolism and obesity. Azelaic acid (AzA), an Olfr544 ligand, specifically induced PKA-dependent lipolysis in adipocytes and promoted fatty acid oxidation (FAO) and ketogenesis in liver, thus shifting the fuel preference to fats. After 6 weeks of administration, mice fed a high-fat diet (HFD) exhibited a marked reduction in adiposity. AzA treatment induced expression of PPAR-α and genes required for FAO in the liver and induced the expression of PPAR-γ coactivator 1-α (Ppargc1a) and uncoupling protein-1 (Ucp1) genes in brown adipose tissue (BAT). Moreover, treatment with AzA increased insulin sensitivity and ketone body levels. This led to a reduction in the respiratory quotient and an increase in the FAO rate, as indicated by indirect calorimetry. AzA treatment had similar antiobesogenic effects in HFD-fed ob/ob mice. Importantly, AzA-associated metabolic changes were completely abrogated in HFD-fed Olfr544-/- mice. To our knowledge, this is the first report to show that Olfr544 orchestrates the metabolic interplay between the liver and adipose tissue, mobilizing stored fats from adipose tissue and shifting the fuel preference to fats in the liver and BAT.


Subject(s)
Adiposity , Lipolysis , Receptors, Odorant/physiology , 3T3-L1 Cells , Adipose Tissue, Brown/metabolism , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Diet, High-Fat/adverse effects , Energy Metabolism , Glucose Intolerance , Insulin Resistance , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , PPAR alpha/metabolism , Signal Transduction , Thermogenesis
12.
Elife ; 52016 07 28.
Article in English | MEDLINE | ID: mdl-27466704

ABSTRACT

KCNQ channels are critical determinants of neuronal excitability, thus emerging as a novel target of anti-epileptic drugs. To date, the mechanisms of KCNQ channel modulation have been mostly characterized to be inhibitory via Gq-coupled receptors, Ca(2+)/CaM, and protein kinase C. Here we demonstrate that methylation of KCNQ by protein arginine methyltransferase 1 (Prmt1) positively regulates KCNQ channel activity, thereby preventing neuronal hyperexcitability. Prmt1+/- mice exhibit epileptic seizures. Methylation of KCNQ2 channels at 4 arginine residues by Prmt1 enhances PIP2 binding, and Prmt1 depletion lowers PIP2 affinity of KCNQ2 channels and thereby the channel activities. Consistently, exogenous PIP2 addition to Prmt1+/- neurons restores KCNQ currents and neuronal excitability to the WT level. Collectively, we propose that Prmt1-dependent facilitation of KCNQ-PIP2 interaction underlies the positive regulation of KCNQ activity by arginine methylation, which may serve as a key target for prevention of neuronal hyperexcitability and seizures.


Subject(s)
Arginine/metabolism , Epilepsy/physiopathology , KCNQ Potassium Channels/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/metabolism , Animals , Disease Models, Animal , Methylation , Mice, Inbred C57BL , Protein Binding
13.
Diabetes ; 65(7): 1868-82, 2016 07.
Article in English | MEDLINE | ID: mdl-27207521

ABSTRACT

Maintenance of skeletal muscle function is critical for metabolic health and the disruption of which exacerbates many chronic diseases such as obesity and diabetes. Skeletal muscle responds to exercise or metabolic demands by a fiber-type switch regulated by signaling-transcription networks that remains to be fully defined. Here, we report that protein arginine methyltransferase 7 (Prmt7) is a key regulator for skeletal muscle oxidative metabolism. Prmt7 is expressed at the highest levels in skeletal muscle and decreased in skeletal muscles with age or obesity. Prmt7(-/-) muscles exhibit decreased oxidative metabolism with decreased expression of genes involved in muscle oxidative metabolism, including PGC-1α. Consistently, Prmt7(-/-) mice exhibited significantly reduced endurance exercise capacities. Furthermore, Prmt7(-/-) mice exhibit decreased energy expenditure, which might contribute to the exacerbated age-related obesity of Prmt7(-/-) mice. Similarly to Prmt7(-/-) muscles, Prmt7 depletion in myoblasts also reduces PGC-1α expression and PGC-1α-promoter driven reporter activities. Prmt7 regulates PGC-1α expression through interaction with and activation of p38 mitogen-activated protein kinase (p38MAPK), which in turn activates ATF2, an upstream transcriptional activator for PGC-1α. Taken together, Prmt7 is a novel regulator for muscle oxidative metabolism via activation of p38MAPK/ATF2/PGC-1α.


Subject(s)
Aging/genetics , Energy Metabolism/genetics , Muscle, Skeletal/metabolism , Obesity/genetics , Protein-Arginine N-Methyltransferases/genetics , Activating Transcription Factor 2/genetics , Activating Transcription Factor 2/metabolism , Aging/metabolism , Animals , Female , Lipids/blood , Male , Mice , Mice, Knockout , Myoblasts/metabolism , Obesity/metabolism , Oxygen Consumption/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Physical Conditioning, Animal , Physical Endurance/genetics , Promoter Regions, Genetic , Protein-Arginine N-Methyltransferases/metabolism , Signal Transduction/physiology
14.
Sci Signal ; 7(314): ra19, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24570487

ABSTRACT

Fasting glucose homeostasis is maintained in part through cAMP (adenosine 3',5'-monophosphate)-dependent transcriptional control of hepatic gluconeogenesis by the transcription factor CREB (cAMP response element-binding protein) and its coactivator CRTC2 (CREB-regulated transcriptional coactivator 2). We showed that PRMT6 (protein arginine methyltransferase 6) promotes fasting-induced transcriptional activation of the gluconeogenic program involving CRTC2. Mass spectrometric analysis indicated that PRMT6 associated with CRTC2. In cells, PRMT6 mediated asymmetric dimethylation of multiple arginine residues of CRTC2, which enhanced the association of CRTC2 with CREB on the promoters of gluconeogenic enzyme-encoding genes. In mice, ectopic expression of PRMT6 promoted higher blood glucose concentrations, which were associated with increased expression of genes encoding gluconeogenic factors, whereas knockdown of hepatic PRMT6 decreased fasting glycemia and improved pyruvate tolerance. The abundance of hepatic PRMT6 was increased in mouse models of obesity and insulin resistance, and adenovirus-mediated depletion of PRMT6 restored euglycemia in these mice. We propose that PRMT6 is involved in the regulation of hepatic glucose metabolism in a CRTC2-dependent manner.


Subject(s)
Gluconeogenesis , Glucose/metabolism , Insulin Resistance , Liver/metabolism , Obesity/metabolism , Transcription Factors/metabolism , Animals , Arginine/genetics , Arginine/metabolism , Cell Line , Cyclic AMP/genetics , Cyclic AMP/metabolism , Glucose/genetics , Humans , Liver/pathology , Methylation , Mice , Obesity/genetics , Obesity/pathology , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Transcription Factors/genetics , Transcription, Genetic
15.
Endocrinol Metab (Seoul) ; 29(4): 435-40, 2014 Dec 29.
Article in English | MEDLINE | ID: mdl-25559572

ABSTRACT

Glucose homeostasis is tightly controlled by the regulation of glucose production in the liver and glucose uptake into peripheral tissues, such as skeletal muscle and adipose tissue. Under prolonged fasting, hepatic gluconeogenesis is mainly responsible for glucose production in the liver, which is essential for tissues, organs, and cells, such as skeletal muscle, the brain, and red blood cells. Hepatic gluconeogenesis is controlled in part by the concerted actions of transcriptional regulators. Fasting signals are relayed by various intracellular enzymes, such as kinases, phosphatases, acetyltransferases, and deacetylases, which affect the transcriptional activity of transcription factors and transcriptional coactivators for gluconeogenic genes. Protein arginine methyltransferases (PRMTs) were recently added to the list of enzymes that are critical for regulating transcription in hepatic gluconeogenesis. In this review, we briefly discuss general aspects of PRMTs in the control of transcription. More specifically, we summarize the roles of four PRMTs: PRMT1, PRMT 4, PRMT 5, and PRMT 6, in the control of hepatic gluconeogenesis through specific regulation of FoxO1- and CREB-dependent transcriptional events.

17.
Hepatology ; 56(4): 1546-56, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22532369

ABSTRACT

UNLABELLED: Postprandial insulin plays a critical role in suppressing hepatic glucose production to maintain euglycemia in mammals. Insulin-dependent activation of protein kinase B (Akt) regulates this process, in part, by inhibiting FoxO1-dependent hepatic gluconeogenesis by direct phosphorylation and subsequent cytoplasmic exclusion. Previously, it was demonstrated that protein arginine methyltransferase 1 (PRMT1)-dependent arginine modification of FoxO1 interferes with Akt-dependent phosphorylation, both in cancer cells and in the Caenorhabditis elegans model, suggesting that this additional modification of FoxO1 might be critical in its transcriptional activity. In this study, we attempted to directly test the effect of arginine methylation of FoxO1 on hepatic glucose metabolism. The ectopic expression of PRMT1 enhanced messenger RNA levels of FoxO1 target genes in gluconeogenesis, resulting in increased glucose production from primary hepatocytes. Phosphorylation of FoxO1 at serine 253 was reduced with PRMT1 expression, without affecting the serine 473 phosphorylation of Akt. Conversely, knockdown of PRMT1 promoted an inhibition of FoxO1 activity and hepatic gluconeogenesis by enhancing the phosphorylation of FoxO1. In addition, genetic haploinsufficiency of Prmt1 reduced hepatic gluconeogenesis and blood-glucose levels in mouse models, underscoring the importance of this factor in hepatic glucose metabolism in vivo. Finally, we were able to observe an amelioration of the hyperglycemic phenotype of db/db mice with PRMT1 knockdown, showing a potential importance of this protein as a therapeutic target for the treatment of diabetes. CONCLUSION: Our data strongly suggest that the PRMT1-dependent regulation of FoxO1 is critical in hepatic glucose metabolism in vivo.


Subject(s)
Forkhead Transcription Factors/genetics , Gluconeogenesis/physiology , Glucose/metabolism , Hepatocytes/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Animals , Blotting, Western , Cells, Cultured , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Forkhead Transcription Factors/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Phosphorylation/genetics , Sensitivity and Specificity , Transcriptional Activation/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...