Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(8): e202316733, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38170453

ABSTRACT

Heavy-metal-free III-V colloidal quantum dots (CQDs) are promising materials for solution-processed short-wave infrared (SWIR) photodetectors. Recent progress in the synthesis of indium antimonide (InSb) CQDs with sizes smaller than the Bohr exciton radius enables quantum-size effect tuning of the band gap. However, it has been challenging to achieve uniform InSb CQDs with band gaps below 0.9 eV, as well as to control the surface chemistry of these large-diameter CQDs. This has, to date, limited the development of InSb CQD photodetectors that are sensitive to ≥ ${\ge }$ 1400 nm light. Here we adopt solvent engineering to facilitate a diffusion-limited growth regime, leading to uniform CQDs with a band gap of 0.89 eV. We then develop a CQD surface reconstruction strategy that employs a dicarboxylic acid to selectively remove the native In/Sb oxides, and enables a carboxylate-halide co-passivation with the subsequent halide ligand exchange. We find that this strategy reduces trap density by half compared to controls, and enables electronic coupling among CQDs. Photodetectors made using the tailored CQDs achieve an external quantum efficiency of 25 % at 1400 nm, the highest among III-V CQD photodetectors in this spectral region.

2.
Adv Mater ; 35(46): e2306147, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37734861

ABSTRACT

In the III-V family of colloidal quantum dot (CQD) semiconductors, InSb promises access to a wider range of infrared wavelengths compared to many light-sensing material candidates. However, achieving the necessary size, size-dispersity, and optical properties has been challenging. Here the synthetic challenges associated with InSb CQDs are investigated and it is found that uncontrolled reduction of the antimony precursor hampers the controlled growth of CQDs. To overcome this, a synthetic strategy that combines nonpyrophoric precursors with zinc halide additives is developed. The experimental and computational studies show that zinc halide additives decelerate the reduction of the antimony precursor, facilitating the growth of more uniformly sized CQDs. It is also found that the halide choice provides additional control over the strength of this effect. The resultant CQDs exhibit well-defined excitonic transitions in spectral range of 1.26-0.98 eV, along with strong photoluminescence. By implementing a postsynthesis ligand exchange, colloidally stable inks enabling the fabrication of high-quality CQD films are achieved. The first demonstration of InSb CQD photodetectors is presented reaching 75% external quantum efficiency (QE) at 1200 nm, to the knowledge the highest short-wave infrared (SWIR) QE reported among heavy-metal-free infrared CQD-based devices.

3.
ACS Nano ; 17(17): 16895-16903, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37579184

ABSTRACT

The infrared quantum plasmon resonance (IR QPR) of nanocrystals (NCs) exhibits the combined properties of classical and quantum mechanics, potentially overcoming the limitations of conventional optical features. However, research on the development of localized surface plasmon resonance (LSPR) from colloidal quantum dots has stagnated, owing to the challenge of increasing the carrier density of semiconductor NCs. Herein, we present the mid-IR QPR of a self-doped Ag2Se NC with an exceptionally narrow bandwidth. Chemical modification of the NC surface with chloride realizes this narrow QPR bandwidth by achieving a high free-carrier density in the NC. The mid-IR QPR feature was thoroughly analyzed by using various experimental methods such as Fourier transform (FT) IR spectroscopy, X-ray photoelectron spectroscopy, and current-voltage measurements. In addition, the optical properties were theoretically analyzed using the plamon-in-a-box model and a modified hydrodynamic model that revealed the effect of coupling with the intraband transition and the limited nature of electron density in semiconductor NCs. Integrating the quantum effect into the plasmonic resonance reduces the peak bandwidth to 19.7 meV, which is an extremely narrow bandwidth compared with that of the LSPR of conventional metal oxide or metal chalcogenide NCs. Our results demonstrate that self-doped silver selenide quantum dots are excellent systems for studying mid-IR QPR.

4.
Nano Lett ; 23(10): 4298-4303, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37166106

ABSTRACT

Solution-processed colloidal quantum dots (CQDs) are promising materials for photodetectors operating in the short-wavelength infrared region (SWIR). Devices typically rely on CQD-based hole transport layers (HTL), such as CQDs treated using 1,2-ethanedithiol. Herein, we find that these HTL materials exhibit low carrier mobility, limiting the photodiode response speed. We develop instead inverted (p-i-n) SWIR photodetectors operating at 1370 nm, employing NiOx as the HTL, ultimately enabling 4× shorter fall times in photodiodes (∼800 ns for EDT and ∼200 ns for NiOx). Optoelectronic simulations reveal that the high carrier mobility of NiOx enhances the electric field in the active layer, decreasing the overall transport time and increasing photodetector response time.

5.
J Phys Chem Lett ; 13(26): 6138-6146, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35759614

ABSTRACT

In search of heavy metal-free mid-IR active colloidal materials, self-doped silver selenide colloidal quantum dots (CQDs) can be an alternative offering tunable mid-IR wavelength with a narrow bandwidth. One of the challenges in the study of the intraband transition is developing a method to widen the intraband transition energy range as well as reducing the toxicity of the materials. Here, we present AgxSe (x > 2) CQDs exhibiting an intraband transition up to 0.39 eV, produced by the cation exchange (CE) method from PbSe CQDs. The major electronic transition efficiently changes from the SWIR band gap of PbSe CQDs to the mid-IR intraband transition of the AgxSe CQDs by the CE. The intraband exciton is verified by examining the absorption and emission of the CE AgxSe CQDs as well as their applications on electrochemical mid-IR luminescence and mid-IR intraband photodetectors.

6.
J Phys Chem Lett ; 13(6): 1431-1437, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35119872

ABSTRACT

Realizing bright colloidal infrared emitters in the midwavelength infrared (or mid-IR), which can be used for low-power IR light-emitting diodes (LEDs), sensors, and deep-tissue imaging, has been a challenge for the last few decades. Here, we present colloidal tellurium nanowires with strong emission intensity at room temperature and even lasing at 3.6 µm (ω) under cryotemperature. Furthermore, the second-harmonic field at 1.8 µm (2ω) and the third-harmonic field at 1.2 µm (3ω) are successfully generated thanks to the intrinsic property of the tellurium nanowire. These unique optical features have never been reported for colloidal tellurium nanocrystals. With the colloidal midwavelength infrared (MWIR) Te nanowire laser, we demonstrate its potential in biomedical applications. MWIR lasing has been clearly observed from nanowires embedded in a human neuroblastoma cell, which could further realize deep-tissue imaging and thermotherapy in the near future.


Subject(s)
Colloids/chemistry , Infrared Rays , Lasers , Nanowires/chemistry , Microscopy, Electron, Scanning , Semiconductors , X-Ray Diffraction
7.
Nano Lett ; 21(19): 8073-8079, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34524828

ABSTRACT

Demands on nontoxic nanomaterials in the short-wavelength infrared (SWIR) have rapidly grown over the past decade. Here, we present the nonstoichiometric silver chalcogenide nanocrystals of AgxTe (x > 2) and Ag2Te/Ag2S CQDs with a tunable bandgap across the SWIR region. When the atomic percent of the metal and chalcogenide elements are varied, the emission frequency of the excitonic peak is successfully extended to 2.7 µm. Surprisingly, the AgxTe CQD film responds to the SWIR light with a responsivity of 2.1 A/W at 78 K. Also, the Ag2S shell growth over the Ag2Te core enhances not only the emission intensity but also the structural rigidity, preventing crystal morphology deformation under the electron beam. The origin of the enhancement in the emission intensity and air stability of AgxTe and Ag2Te/Ag2S CQDs is carefully investigated by X-ray photoelectron spectroscopy (XPS). The optical properties and infrared photocurrent of AgxTe CQDs will provide new opportunities for solution-based SWIR applications.

8.
J Phys Chem Lett ; 12(10): 2562-2569, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33684285

ABSTRACT

Intraband transitions of colloidal semiconductor nanocrystals, or the electronic transitions occurring in either the conduction band or valence band, have recently received considerable attention because utilizing the intraband transitions provides new approaches for applications such as photodetectors, imaging, solar cells, lasers, and so on. In the past few years, it has been revealed that observing the intraband transition is not limited for temporal measurement such as ultrafast spectroscopy but available for steady-state measurement even under ambient conditions with the help of self-doped semiconductor nanocrystals. Considering the large absorption coefficient of the steady-state intraband transition comparable to that of the bandgap transition, the use of the intraband transition will be promising for both fundamental and application studies. Here, we summarize the recent progress in studies on intraband photoluminescence of self-doped semiconductor nanocrystals and discuss key questions to be addressed in future research.

9.
Nano Lett ; 20(7): 4985-4992, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32496072

ABSTRACT

An increase in the carrier density of semiconductor nanocrystals can gradually change the origin of the optical property from the excitonic transition to the localized surface plasmon resonances. Here, we present the evolution of the electronic transition of self-doped Ag2Se colloidal quantum dots, from the intraband transition to the localized surface plasmon resonances along with a splitting of the intraband transition (1Pe-1Se). The minimum fwhm of the split intraband transition is only 23.7 meV, which is exceptionally narrow compared to that of metal oxide nanocrystals showing LSPRs, inferring that the electron-electron scattering is significantly suppressed due to the smaller carrier density. The splitting of the intraband transition mainly results from the asymmetrical crystal structure of the tetragonal Ag2Se CQDs and becomes distinct when the nanocrystal changes its crystal structure from the cubic to tetragonal structure. Maximizing the discrete energy levels in the quantum dot along with mixing with plasmonic characters may provide opportunities to fully harness merits of both the quantum confinement effect and localized surface plasmon resonance characters.

10.
ACS Appl Mater Interfaces ; 12(19): 21944-21951, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32319744

ABSTRACT

Solution-processable perovskite quantum dots are considered as promising optical materials for light-emitting optoelectronics. Light-emitting field-effect transistors (LEFETs) that can be operated under a relatively lower potential with a high energy conversion efficiency are yet to be realized with perovskite quantum dots. Here, we present the CsPbBr3 quantum dot-based LEFET. Surprisingly, unipolar transport characteristics with strong electroluminescence were observed at the interface of the CsPbBr3 QD-LEFET along with an exceptionally wide recombination zone of 80 µm, an order of magnitude larger than that of organic/polymer LEFETs. Based on the systematic analysis for the electroluminescence of the CsPbBr3 NC-LEFET, we revealed that the increased diffusion length determined by the majority carrier mobility and the lifetime well explains the remarkably wide recombination zone. Furthermore, it was found that the energy-level matching and transport geometry of the heterostructure also determine the charge distribution and recombination, substantially affecting the performance of the CsPbBr3 QD LEFET.

11.
J Phys Chem Lett ; 10(15): 4303-4309, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31306579

ABSTRACT

Tellurium has been of great interest in physics, chemistry, material science, and more recently in nanoscience. However, information on the photoluminescence of Te crystals, crucial in understanding the material, has never been disclosed. Here, we present photoluminescence and lasing for the Te bulk crystal and microcrystals. Photoluminescence of Te bulk solid crystal was observed at 3.75 µm in the midwavelength infrared (MWIR) region, matching the theoretically predicted value well. With increasing the photoexcitation intensity or decreasing temperature, we successfully observed MWIR random lasing of the bulk Te crystals at 3.62 µm. Furthermore, the rod-shaped Te microcrystals efficiently exhibit second harmonic and third harmonic lasing at MWIR and short-wavelength infrared regions, respectively. Nonlinear coherent MWIR lasing from the Te microcrystals will serve as an excellent mid-IR light source, opening up new applications in infrared photonics, extremely long-depth penetration bioimaging, and optoelectronics.

12.
ACS Appl Mater Interfaces ; 11(7): 7242-7249, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30688430

ABSTRACT

Self-doping in nanocrystals allows accessing higher quantum states. The electrons occupying the lowest energy state of the conduction band form a metastable state that is very sensitive to the electrostatic potential of the surface. Here, we demonstrate that the high charge sensitivity of the self-doped HgSe colloidal quantum dot solid can be used for sensing three different targets with different phases through self-doped HgSe nanocrystal/ZnO thin-film transistors: the environmental gases (CO2 gas, NO gas, and H2S gas); mid-IR photon; and biothiol (l-cysteine) molecules. The self-doped quantum dot solid detects the targets through different mechanisms. The physisorption of the CO2 gas and the NO gas molecules, and the mid-IR photodetection show reversible processes, whereas the chemisorption of l-cysteine biothiol and H2S gas molecules shows irreversible processes. Considering the quenching of mid-IR intraband photoluminescence of the HgSe colloidal quantum dot solid by the vibrational mode of the CO2 gas molecule, sensing the CO2 gas could be involved in the electronic-to-vibrational energy transfer. The target molecules are quantitatively analyzed, and the limits of detection for CO2 and l-cysteine are 250 ppm and 10 nM, respectively, which are comparable to the performance of commercial detectors.

13.
Chem Commun (Camb) ; 54(61): 8435-8445, 2018 Jul 26.
Article in English | MEDLINE | ID: mdl-29972153

ABSTRACT

The tunable bandgap energy has been recognized as a prominent feature of the colloidal semiconductor nanocrystal, also called the colloidal quantum dot (CQD). Due to the broken degeneracy caused by the quantum confinement effect, the electronic states of the conduction band (CB) are separated by a few hundred meV. The electronic transition occurring in the conduction band is called the intraband transition and has been regarded as a fast electron relaxation process that cannot be readily observed under steady state. However, recent progress in the studies of intraband transitions allowed the observation of the mid-IR intraband transition in steady state and ambient condition, providing a pathway to exploit the mid-IR electronic transition for various optoelectronic applications. The observation of the steady state intraband transitions has been possible due to the electron filling of the lowest electronic state (1Se) of the conduction band in the semiconductor nanocrystal. Specifically, the nanocrystals are "self-doped" with electrons through chemical synthesis - that is, without the need of adding heterogeneous impurity or applying an electrical potential. In this feature article, we summarize the recent advances in the study on intraband electronic transitions along with the interesting findings on the magnetic and electronic properties of the self-doped colloidal metal chalcogenide semiconductor nanocrystals. The mid-IR intraband transitions of non-toxic nanocrystals, which exclude the toxic mercury and cadmium constituents, are also highlighted, which hold promise for safer applications utilizing the higher quantum states of nanocrystals.

14.
Nano Lett ; 17(2): 1187-1193, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28112942

ABSTRACT

Filling the lowest quantum state of the conduction band of colloidal nanocrystals with a single electron, which is analogous to the filling the lowest unoccupied molecular orbital in a molecule with a single electron, has attracted much attention due to the possibility of harnessing the electron spin for potential spin-based applications. The quantized energy levels of the artificial atom, in principle, make it possible for a nanocrystal to be filled with an electron if the Fermi-energy level is optimally tuned during the nanocrystal growth. Here, we report the singly occupied quantum state (SOQS) and doubly occupied quantum state (DOQS) of a colloidal nanocrystal in steady state under ambient conditions. The number of electrons occupying the lowest quantum state can be controlled to be zero, one (unpaired), and two (paired) depending on the nanocrystal growth time via changing the stoichiometry of the nanocrystal. Electron paramagnetic resonance spectroscopy proved the nanocrystals with single electron to show superparamagnetic behavior, which is a direct evidence of the SOQS, whereas the DOQS of the two- or zero-electron occupied nanocrystals in the 1Se exhibit diamagnetic behavior. In combination with the superconducting quantum interference device measurement, it turns out that the SOQS of the HgSe colloidal quantum dots has superparamagnetic property. The appearance and change of the steady-state mid-IR intraband absorption spectrum reflect the sequential occupation of the 1Se state with electrons. The magnetic property of the colloidal quantum dot, initially determined by the chemical synthesis, can be tuned from diamagnetic to superparamagnetic and vice versa by varying the number of electrons through postchemical treatment. The switchable magnetic property will be very useful for further applications such as colloidal nanocrystal based spintronics, nonvolatile memory, infrared optoelectronics, catalyst, imaging, and quantum computing.

SELECTION OF CITATIONS
SEARCH DETAIL
...