Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 89: 102886, 2023 10.
Article in English | MEDLINE | ID: mdl-37494811

ABSTRACT

Microsatellite instability (MSI) refers to alterations in the length of simple repetitive genomic sequences. MSI status serves as a prognostic and predictive factor in colorectal cancer. The MSI-high status is a good prognostic factor in stage II/III cancer, and predicts a lack of benefit to adjuvant fluorouracil chemotherapy in stage II cancer but a good response to immunotherapy in stage IV cancer. Therefore, determining MSI status in patients with colorectal cancer is important for identifying the appropriate treatment protocol. In the Pathology Artificial Intelligence Platform (PAIP) 2020 challenge, artificial intelligence researchers were invited to predict MSI status based on colorectal cancer slide images. Participants were required to perform two tasks. The primary task was to classify a given slide image as belonging to either the MSI-high or the microsatellite-stable group. The second task was tumor area segmentation to avoid ties with the main task. A total of 210 of the 495 participants enrolled in the challenge downloaded the images, and 23 teams submitted their final results. Seven teams from the top 10 participants agreed to disclose their algorithms, most of which were convolutional neural network-based deep learning models, such as EfficientNet and UNet. The top-ranked system achieved the highest F1 score (0.9231). This paper summarizes the various methods used in the PAIP 2020 challenge. This paper supports the effectiveness of digital pathology for identifying the relationship between colorectal cancer and the MSI characteristics.


Subject(s)
Colorectal Neoplasms , Microsatellite Instability , Humans , Artificial Intelligence , Prognosis , Fluorouracil/therapeutic use , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology
2.
Sensors (Basel) ; 20(23)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260957

ABSTRACT

With the increase in research cases of the application of a convolutional neural network (CNN)-based object detection technology, studies on the light-weight CNN models that can be performed in real time on the edge-computing devices are also increasing. This paper proposed scalable convolutional blocks that can be easily designed CNN networks of You Only Look Once (YOLO) detector which have the balanced processing speed and accuracy of the target edge-computing devices considering different performances by exchanging the proposed blocks simply. The maximum number of kernels of the convolutional layer was determined through simple but intuitive speed comparison tests for three edge-computing devices to be considered. The scalable convolutional blocks were designed in consideration of the limited maximum number of kernels to detect objects in real time on these edge-computing devices. Three scalable and fast YOLO detectors (SF-YOLO) which designed using the proposed scalable convolutional blocks compared the processing speed and accuracy with several conventional light-weight YOLO detectors on the edge-computing devices. When compared with YOLOv3-tiny, SF-YOLO was seen to be 2 times faster than the previous processing speed but with the same accuracy as YOLOv3-tiny, and also, a 48% improved processing speed than the YOLOv3-tiny-PRN which is the processing speed improvement model. Also, even in the large SF-YOLO model that focuses on the accuracy performance, it achieved a 10% faster processing speed with better accuracy of 40.4% mAP@0.5 in the MS COCO dataset than YOLOv4-tiny model.

3.
J Nanosci Nanotechnol ; 20(11): 6821-6826, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32604520

ABSTRACT

The influence of spark plasma sintering (SPS) conditions on the optical and mechanical properties of MgAl2O4 spinel was investigated for application to infrared windows as parts of military systems. The thermal conditions of SPS, including the temperature and heating rate, have a significant impact on optical and mechanical properties. This study shows that the formation and growth of abnormal grains cause mechanical degradation with an increasing SPS temperature. In-line transmittance (Tin) was affected by the heating rate due to changes in oxygen vacancy and carbon contamination in SPSed samples. The fabricated spinel exhibited excellent flexural strength of 401 MPa and an average mid-infrared transmittance of 84.8% in the range of 3-5 µm.

SELECTION OF CITATIONS
SEARCH DETAIL
...